You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
92 lines
3.3 KiB
92 lines
3.3 KiB
|
3 years ago
|
import base64
|
||
|
|
import time
|
||
|
|
|
||
|
|
|
||
|
|
from openai import util
|
||
|
|
from openai.api_resources.abstract.engine_api_resource import EngineAPIResource
|
||
|
|
from openai.datalib import numpy as np, assert_has_numpy
|
||
|
|
from openai.error import TryAgain
|
||
|
|
|
||
|
|
|
||
|
|
class Embedding(EngineAPIResource):
|
||
|
|
OBJECT_NAME = "embeddings"
|
||
|
|
|
||
|
|
@classmethod
|
||
|
|
def create(cls, *args, **kwargs):
|
||
|
|
"""
|
||
|
|
Creates a new embedding for the provided input and parameters.
|
||
|
|
|
||
|
|
See https://platform.openai.com/docs/api-reference/embeddings for a list
|
||
|
|
of valid parameters.
|
||
|
|
"""
|
||
|
|
start = time.time()
|
||
|
|
timeout = kwargs.pop("timeout", None)
|
||
|
|
|
||
|
|
user_provided_encoding_format = kwargs.get("encoding_format", None)
|
||
|
|
|
||
|
|
# If encoding format was not explicitly specified, we opaquely use base64 for performance
|
||
|
|
if not user_provided_encoding_format:
|
||
|
|
kwargs["encoding_format"] = "base64"
|
||
|
|
|
||
|
|
while True:
|
||
|
|
try:
|
||
|
|
response = super().create(*args, **kwargs)
|
||
|
|
|
||
|
|
# If a user specifies base64, we'll just return the encoded string.
|
||
|
|
# This is only for the default case.
|
||
|
|
if not user_provided_encoding_format:
|
||
|
|
for data in response.data:
|
||
|
|
|
||
|
|
# If an engine isn't using this optimization, don't do anything
|
||
|
|
if type(data["embedding"]) == str:
|
||
|
|
assert_has_numpy()
|
||
|
|
data["embedding"] = np.frombuffer(
|
||
|
|
base64.b64decode(data["embedding"]), dtype="float32"
|
||
|
|
).tolist()
|
||
|
|
|
||
|
|
return response
|
||
|
|
except TryAgain as e:
|
||
|
|
if timeout is not None and time.time() > start + timeout:
|
||
|
|
raise
|
||
|
|
|
||
|
|
util.log_info("Waiting for model to warm up", error=e)
|
||
|
|
|
||
|
|
@classmethod
|
||
|
|
async def acreate(cls, *args, **kwargs):
|
||
|
|
"""
|
||
|
|
Creates a new embedding for the provided input and parameters.
|
||
|
|
|
||
|
|
See https://platform.openai.com/docs/api-reference/embeddings for a list
|
||
|
|
of valid parameters.
|
||
|
|
"""
|
||
|
|
start = time.time()
|
||
|
|
timeout = kwargs.pop("timeout", None)
|
||
|
|
|
||
|
|
user_provided_encoding_format = kwargs.get("encoding_format", None)
|
||
|
|
|
||
|
|
# If encoding format was not explicitly specified, we opaquely use base64 for performance
|
||
|
|
if not user_provided_encoding_format:
|
||
|
|
kwargs["encoding_format"] = "base64"
|
||
|
|
|
||
|
|
while True:
|
||
|
|
try:
|
||
|
|
response = await super().acreate(*args, **kwargs)
|
||
|
|
|
||
|
|
# If a user specifies base64, we'll just return the encoded string.
|
||
|
|
# This is only for the default case.
|
||
|
|
if not user_provided_encoding_format:
|
||
|
|
for data in response.data:
|
||
|
|
|
||
|
|
# If an engine isn't using this optimization, don't do anything
|
||
|
|
if type(data["embedding"]) == str:
|
||
|
|
data["embedding"] = np.frombuffer(
|
||
|
|
base64.b64decode(data["embedding"]), dtype="float32"
|
||
|
|
).tolist()
|
||
|
|
|
||
|
|
return response
|
||
|
|
except TryAgain as e:
|
||
|
|
if timeout is not None and time.time() > start + timeout:
|
||
|
|
raise
|
||
|
|
|
||
|
|
util.log_info("Waiting for model to warm up", error=e)
|