| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								import os
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								import sys
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								from typing import Any, Callable, NamedTuple, Optional
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								from openai.datalib import pandas as pd, assert_has_pandas
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								class Remediation(NamedTuple):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    name: str
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    immediate_msg: Optional[str] = None
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    necessary_msg: Optional[str] = None
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    necessary_fn: Optional[Callable[[Any], Any]] = None
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    optional_msg: Optional[str] = None
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    optional_fn: Optional[Callable[[Any], Any]] = None
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    error_msg: Optional[str] = None
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								def num_examples_validator(df):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    This validator will only print out the number of examples and recommend to the user to increase the number of examples if less than 100.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    MIN_EXAMPLES = 100
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    optional_suggestion = (
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        ""
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        if len(df) >= MIN_EXAMPLES
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        else ". In general, we recommend having at least a few hundred examples. We've found that performance tends to linearly increase for every doubling of the number of examples"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    )
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    immediate_msg = (
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        f"\n- Your file contains {len(df)} prompt-completion pairs{optional_suggestion}"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    )
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    return Remediation(name="num_examples", immediate_msg=immediate_msg)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								def necessary_column_validator(df, necessary_column):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    This validator will ensure that the necessary column is present in the dataframe.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    def lower_case_column(df, column):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        cols = [c for c in df.columns if str(c).lower() == column]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        df.rename(columns={cols[0]: column.lower()}, inplace=True)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        return df
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    immediate_msg = None
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    necessary_fn = None
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    necessary_msg = None
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    error_msg = None
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if necessary_column not in df.columns:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        if necessary_column in [str(c).lower() for c in df.columns]:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            def lower_case_column_creator(df):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                return lower_case_column(df, necessary_column)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            necessary_fn = lower_case_column_creator
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            immediate_msg = (
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                f"\n- The `{necessary_column}` column/key should be lowercase"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            )
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            necessary_msg = f"Lower case column name to `{necessary_column}`"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        else:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            error_msg = f"`{necessary_column}` column/key is missing. Please make sure you name your columns/keys appropriately, then retry"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    return Remediation(
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        name="necessary_column",
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        immediate_msg=immediate_msg,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        necessary_msg=necessary_msg,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        necessary_fn=necessary_fn,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        error_msg=error_msg,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    )
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								def additional_column_validator(df, fields=["prompt", "completion"]):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    This validator will remove additional columns from the dataframe.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    additional_columns = []
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    necessary_msg = None
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    immediate_msg = None
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    necessary_fn = None
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if len(df.columns) > 2:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        additional_columns = [c for c in df.columns if c not in fields]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        warn_message = ""
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        for ac in additional_columns:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            dups = [c for c in additional_columns if ac in c]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            if len(dups) > 0:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                warn_message += f"\n  WARNING: Some of the additional columns/keys contain `{ac}` in their name. These will be ignored, and the column/key `{ac}` will be used instead. This could also result from a duplicate column/key in the provided file."
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        immediate_msg = f"\n- The input file should contain exactly two columns/keys per row. Additional columns/keys present are: {additional_columns}{warn_message}"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        necessary_msg = f"Remove additional columns/keys: {additional_columns}"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        def necessary_fn(x):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            return x[fields]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    return Remediation(
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        name="additional_column",
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        immediate_msg=immediate_msg,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        necessary_msg=necessary_msg,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        necessary_fn=necessary_fn,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    )
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								def non_empty_field_validator(df, field="completion"):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    This validator will ensure that no completion is empty.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    necessary_msg = None
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    necessary_fn = None
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    immediate_msg = None
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if df[field].apply(lambda x: x == "").any() or df[field].isnull().any():
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        empty_rows = (df[field] == "") | (df[field].isnull())
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        empty_indexes = df.reset_index().index[empty_rows].tolist()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        immediate_msg = f"\n- `{field}` column/key should not contain empty strings. These are rows: {empty_indexes}"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        def necessary_fn(x):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            return x[x[field] != ""].dropna(subset=[field])
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        necessary_msg = f"Remove {len(empty_indexes)} rows with empty {field}s"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    return Remediation(
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        name=f"empty_{field}",
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        immediate_msg=immediate_msg,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        necessary_msg=necessary_msg,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        necessary_fn=necessary_fn,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    )
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								def duplicated_rows_validator(df, fields=["prompt", "completion"]):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    This validator will suggest to the user to remove duplicate rows if they exist.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    duplicated_rows = df.duplicated(subset=fields)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    duplicated_indexes = df.reset_index().index[duplicated_rows].tolist()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    immediate_msg = None
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    optional_msg = None
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    optional_fn = None
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if len(duplicated_indexes) > 0:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        immediate_msg = f"\n- There are {len(duplicated_indexes)} duplicated {'-'.join(fields)} sets. These are rows: {duplicated_indexes}"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        optional_msg = f"Remove {len(duplicated_indexes)} duplicate rows"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        def optional_fn(x):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            return x.drop_duplicates(subset=fields)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    return Remediation(
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        name="duplicated_rows",
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        immediate_msg=immediate_msg,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        optional_msg=optional_msg,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        optional_fn=optional_fn,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    )
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								def long_examples_validator(df):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    This validator will suggest to the user to remove examples that are too long.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    immediate_msg = None
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    optional_msg = None
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    optional_fn = None
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    ft_type = infer_task_type(df)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if ft_type != "open-ended generation":
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        def get_long_indexes(d):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            long_examples = d.apply(
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                lambda x: len(x.prompt) + len(x.completion) > 10000, axis=1
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            )
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            return d.reset_index().index[long_examples].tolist()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        long_indexes = get_long_indexes(df)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        if len(long_indexes) > 0:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            immediate_msg = f"\n- There are {len(long_indexes)} examples that are very long. These are rows: {long_indexes}\nFor conditional generation, and for classification the examples shouldn't be longer than 2048 tokens."
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            optional_msg = f"Remove {len(long_indexes)} long examples"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            def optional_fn(x):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                long_indexes_to_drop = get_long_indexes(x)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                if long_indexes != long_indexes_to_drop:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                    sys.stdout.write(f"The indices of the long examples has changed as a result of a previously applied recommendation.\nThe {len(long_indexes_to_drop)} long examples to be dropped are now at the following indices: {long_indexes_to_drop}\n")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                return x.drop(long_indexes_to_drop)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    return Remediation(
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        name="long_examples",
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        immediate_msg=immediate_msg,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        optional_msg=optional_msg,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        optional_fn=optional_fn,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    )
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								def common_prompt_suffix_validator(df):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    This validator will suggest to add a common suffix to the prompt if one doesn't already exist in case of classification or conditional generation.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    error_msg = None
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    immediate_msg = None
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    optional_msg = None
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    optional_fn = None
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    # Find a suffix which is not contained within the prompt otherwise
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    suggested_suffix = "\n\n### =>\n\n"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    suffix_options = [
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        " ->",
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        "\n\n###\n\n",
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        "\n\n===\n\n",
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        "\n\n---\n\n",
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        "\n\n===>\n\n",
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        "\n\n--->\n\n",
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    ]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    for suffix_option in suffix_options:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        if suffix_option == " ->":
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            if df.prompt.str.contains("\n").any():
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                continue
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        if df.prompt.str.contains(suffix_option, regex=False).any():
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            continue
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        suggested_suffix = suffix_option
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        break
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    display_suggested_suffix = suggested_suffix.replace("\n", "\\n")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    ft_type = infer_task_type(df)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if ft_type == "open-ended generation":
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        return Remediation(name="common_suffix")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    def add_suffix(x, suffix):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        x["prompt"] += suffix
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        return x
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    common_suffix = get_common_xfix(df.prompt, xfix="suffix")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if (df.prompt == common_suffix).all():
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        error_msg = f"All prompts are identical: `{common_suffix}`\nConsider leaving the prompts blank if you want to do open-ended generation, otherwise ensure prompts are different"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        return Remediation(name="common_suffix", error_msg=error_msg)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if common_suffix != "":
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        common_suffix_new_line_handled = common_suffix.replace("\n", "\\n")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        immediate_msg = (
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            f"\n- All prompts end with suffix `{common_suffix_new_line_handled}`"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        )
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        if len(common_suffix) > 10:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            immediate_msg += f". This suffix seems very long. Consider replacing with a shorter suffix, such as `{display_suggested_suffix}`"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        if (
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            df.prompt.str[: -len(common_suffix)]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            .str.contains(common_suffix, regex=False)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            .any()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        ):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            immediate_msg += f"\n  WARNING: Some of your prompts contain the suffix `{common_suffix}` more than once. We strongly suggest that you review your prompts and add a unique suffix"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    else:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        immediate_msg = "\n- Your data does not contain a common separator at the end of your prompts. Having a separator string appended to the end of the prompt makes it clearer to the fine-tuned model where the completion should begin. See https://platform.openai.com/docs/guides/fine-tuning/preparing-your-dataset for more detail and examples. If you intend to do open-ended generation, then you should leave the prompts empty"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if common_suffix == "":
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        optional_msg = (
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            f"Add a suffix separator `{display_suggested_suffix}` to all prompts"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        )
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        def optional_fn(x):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            return add_suffix(x, suggested_suffix)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    return Remediation(
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        name="common_completion_suffix",
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        immediate_msg=immediate_msg,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        optional_msg=optional_msg,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        optional_fn=optional_fn,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        error_msg=error_msg,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    )
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								def common_prompt_prefix_validator(df):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    This validator will suggest to remove a common prefix from the prompt if a long one exist.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    MAX_PREFIX_LEN = 12
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    immediate_msg = None
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    optional_msg = None
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    optional_fn = None
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    common_prefix = get_common_xfix(df.prompt, xfix="prefix")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if common_prefix == "":
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        return Remediation(name="common_prefix")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    def remove_common_prefix(x, prefix):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        x["prompt"] = x["prompt"].str[len(prefix) :]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        return x
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if (df.prompt == common_prefix).all():
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        # already handled by common_suffix_validator
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        return Remediation(name="common_prefix")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if common_prefix != "":
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        immediate_msg = f"\n- All prompts start with prefix `{common_prefix}`"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        if MAX_PREFIX_LEN < len(common_prefix):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            immediate_msg += ". Fine-tuning doesn't require the instruction specifying the task, or a few-shot example scenario. Most of the time you should only add the input data into the prompt, and the desired output into the completion"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            optional_msg = f"Remove prefix `{common_prefix}` from all prompts"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            def optional_fn(x):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                return remove_common_prefix(x, common_prefix)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    return Remediation(
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        name="common_prompt_prefix",
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        immediate_msg=immediate_msg,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        optional_msg=optional_msg,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        optional_fn=optional_fn,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    )
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								def common_completion_prefix_validator(df):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    This validator will suggest to remove a common prefix from the completion if a long one exist.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    MAX_PREFIX_LEN = 5
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    common_prefix = get_common_xfix(df.completion, xfix="prefix")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    ws_prefix = len(common_prefix) > 0 and common_prefix[0] == " "
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if len(common_prefix) < MAX_PREFIX_LEN:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        return Remediation(name="common_prefix")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    def remove_common_prefix(x, prefix, ws_prefix):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        x["completion"] = x["completion"].str[len(prefix) :]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        if ws_prefix:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            # keep the single whitespace as prefix
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            x["completion"] = " " + x["completion"]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        return x
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if (df.completion == common_prefix).all():
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        # already handled by common_suffix_validator
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        return Remediation(name="common_prefix")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    immediate_msg = f"\n- All completions start with prefix `{common_prefix}`. Most of the time you should only add the output data into the completion, without any prefix"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    optional_msg = f"Remove prefix `{common_prefix}` from all completions"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    def optional_fn(x):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        return remove_common_prefix(x, common_prefix, ws_prefix)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    return Remediation(
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        name="common_completion_prefix",
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        immediate_msg=immediate_msg,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        optional_msg=optional_msg,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        optional_fn=optional_fn,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    )
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								def common_completion_suffix_validator(df):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    This validator will suggest to add a common suffix to the completion if one doesn't already exist in case of classification or conditional generation.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    error_msg = None
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    immediate_msg = None
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    optional_msg = None
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    optional_fn = None
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    ft_type = infer_task_type(df)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if ft_type == "open-ended generation" or ft_type == "classification":
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        return Remediation(name="common_suffix")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    common_suffix = get_common_xfix(df.completion, xfix="suffix")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if (df.completion == common_suffix).all():
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        error_msg = f"All completions are identical: `{common_suffix}`\nEnsure completions are different, otherwise the model will just repeat `{common_suffix}`"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        return Remediation(name="common_suffix", error_msg=error_msg)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    # Find a suffix which is not contained within the completion otherwise
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    suggested_suffix = " [END]"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    suffix_options = [
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        "\n",
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        ".",
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        " END",
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        "***",
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        "+++",
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        "&&&",
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        "$$$",
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        "@@@",
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        "%%%",
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    ]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    for suffix_option in suffix_options:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        if df.completion.str.contains(suffix_option, regex=False).any():
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            continue
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        suggested_suffix = suffix_option
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        break
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    display_suggested_suffix = suggested_suffix.replace("\n", "\\n")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    def add_suffix(x, suffix):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        x["completion"] += suffix
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        return x
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if common_suffix != "":
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        common_suffix_new_line_handled = common_suffix.replace("\n", "\\n")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        immediate_msg = (
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            f"\n- All completions end with suffix `{common_suffix_new_line_handled}`"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        )
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        if len(common_suffix) > 10:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            immediate_msg += f". This suffix seems very long. Consider replacing with a shorter suffix, such as `{display_suggested_suffix}`"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        if (
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            df.completion.str[: -len(common_suffix)]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            .str.contains(common_suffix, regex=False)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            .any()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        ):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            immediate_msg += f"\n  WARNING: Some of your completions contain the suffix `{common_suffix}` more than once. We suggest that you review your completions and add a unique ending"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    else:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        immediate_msg = "\n- Your data does not contain a common ending at the end of your completions. Having a common ending string appended to the end of the completion makes it clearer to the fine-tuned model where the completion should end. See https://platform.openai.com/docs/guides/fine-tuning/preparing-your-dataset for more detail and examples."
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if common_suffix == "":
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        optional_msg = (
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            f"Add a suffix ending `{display_suggested_suffix}` to all completions"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        )
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        def optional_fn(x):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            return add_suffix(x, suggested_suffix)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    return Remediation(
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        name="common_completion_suffix",
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        immediate_msg=immediate_msg,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        optional_msg=optional_msg,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        optional_fn=optional_fn,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        error_msg=error_msg,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    )
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								def completions_space_start_validator(df):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    This validator will suggest to add a space at the start of the completion if it doesn't already exist. This helps with tokenization.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    def add_space_start(x):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        x["completion"] = x["completion"].apply(
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            lambda x: ("" if x[0] == " " else " ") + x
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        )
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        return x
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    optional_msg = None
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    optional_fn = None
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    immediate_msg = None
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if df.completion.str[:1].nunique() != 1 or df.completion.values[0][0] != " ":
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        immediate_msg = "\n- The completion should start with a whitespace character (` `). This tends to produce better results due to the tokenization we use. See https://platform.openai.com/docs/guides/fine-tuning/preparing-your-dataset for more details"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        optional_msg = "Add a whitespace character to the beginning of the completion"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        optional_fn = add_space_start
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    return Remediation(
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        name="completion_space_start",
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        immediate_msg=immediate_msg,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        optional_msg=optional_msg,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        optional_fn=optional_fn,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    )
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								def lower_case_validator(df, column):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    This validator will suggest to lowercase the column values, if more than a third of letters are uppercase.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    def lower_case(x):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        x[column] = x[column].str.lower()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        return x
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    count_upper = (
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        df[column]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        .apply(lambda x: sum(1 for c in x if c.isalpha() and c.isupper()))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        .sum()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    )
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    count_lower = (
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        df[column]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        .apply(lambda x: sum(1 for c in x if c.isalpha() and c.islower()))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        .sum()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    )
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if count_upper * 2 > count_lower:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        return Remediation(
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            name="lower_case",
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            immediate_msg=f"\n- More than a third of your `{column}` column/key is uppercase. Uppercase {column}s tends to perform worse than a mixture of case encountered in normal language. We recommend to lower case the data if that makes sense in your domain. See https://platform.openai.com/docs/guides/fine-tuning/preparing-your-dataset for more details",
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            optional_msg=f"Lowercase all your data in column/key `{column}`",
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            optional_fn=lower_case,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        )
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								def read_any_format(fname, fields=["prompt", "completion"]):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    This function will read a file saved in .csv, .json, .txt, .xlsx or .tsv format using pandas.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								     - for .xlsx it will read the first sheet
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								     - for .txt it will assume completions and split on newline
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    assert_has_pandas()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    remediation = None
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    necessary_msg = None
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    immediate_msg = None
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    error_msg = None
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    df = None
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if os.path.isfile(fname):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        try:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            if fname.lower().endswith(".csv") or fname.lower().endswith(".tsv"):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                file_extension_str, separator = (
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                    ("CSV", ",") if fname.lower().endswith(".csv") else ("TSV", "\t")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                )
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                immediate_msg = f"\n- Based on your file extension, your file is formatted as a {file_extension_str} file"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                necessary_msg = (
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                    f"Your format `{file_extension_str}` will be converted to `JSONL`"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                )
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                df = pd.read_csv(fname, sep=separator, dtype=str).fillna("")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            elif fname.lower().endswith(".xlsx"):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                immediate_msg = "\n- Based on your file extension, your file is formatted as an Excel file"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                necessary_msg = "Your format `XLSX` will be converted to `JSONL`"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                xls = pd.ExcelFile(fname)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                sheets = xls.sheet_names
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                if len(sheets) > 1:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                    immediate_msg += "\n- Your Excel file contains more than one sheet. Please either save as csv or ensure all data is present in the first sheet. WARNING: Reading only the first sheet..."
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                df = pd.read_excel(fname, dtype=str).fillna("")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            elif fname.lower().endswith(".txt"):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                immediate_msg = (
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                    "\n- Based on your file extension, you provided a text file"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                )
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                necessary_msg = "Your format `TXT` will be converted to `JSONL`"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                with open(fname, "r") as f:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                    content = f.read()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                    df = pd.DataFrame(
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                        [["", line] for line in content.split("\n")],
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                        columns=fields,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                        dtype=str,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                    ).fillna("")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            elif fname.lower().endswith(".jsonl"):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                df = pd.read_json(fname, lines=True, dtype=str).fillna("")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                if len(df) == 1:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                    # this is NOT what we expect for a .jsonl file
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                    immediate_msg = "\n- Your JSONL file appears to be in a JSON format. Your file will be converted to JSONL format"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                    necessary_msg = "Your format `JSON` will be converted to `JSONL`"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                    df = pd.read_json(fname, dtype=str).fillna("")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                else:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                    pass  # this is what we expect for a .jsonl file
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            elif fname.lower().endswith(".json"):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                df = pd.read_json(fname, lines=True, dtype=str).fillna("")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                if len(df) == 1:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                    # this is what we expect for a .json file
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                    df = pd.read_json(fname, dtype=str).fillna("")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                else:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                    # this is NOT what we expect for a .json file
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                    immediate_msg = "\n- Your JSON file appears to be in a JSONL format. Your file will be converted to JSONL format"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                    necessary_msg = "Your format `JSON` will be converted to `JSONL`"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            else:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                error_msg = "Your file must have one of the following extensions: .CSV, .TSV, .XLSX, .TXT, .JSON or .JSONL"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                if "." in fname:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                    error_msg += f" Your file `{fname}` ends with the extension `.{fname.split('.')[-1]}` which is not supported."
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                else:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                    error_msg += f" Your file `{fname}` is missing a file extension."
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        except (ValueError, TypeError):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            file_extension_str = fname.split(".")[-1].upper()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            error_msg = f"Your file `{fname}` does not appear to be in valid {file_extension_str} format. Please ensure your file is formatted as a valid {file_extension_str} file."
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    else:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        error_msg = f"File {fname} does not exist."
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    remediation = Remediation(
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        name="read_any_format",
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        necessary_msg=necessary_msg,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        immediate_msg=immediate_msg,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        error_msg=error_msg,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    )
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    return df, remediation
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								def format_inferrer_validator(df):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    This validator will infer the likely fine-tuning format of the data, and display it to the user if it is classification.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    It will also suggest to use ada and explain train/validation split benefits.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    ft_type = infer_task_type(df)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    immediate_msg = None
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if ft_type == "classification":
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        immediate_msg = f"\n- Based on your data it seems like you're trying to fine-tune a model for {ft_type}\n- For classification, we recommend you try one of the faster and cheaper models, such as `ada`\n- For classification, you can estimate the expected model performance by keeping a held out dataset, which is not used for training"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    return Remediation(name="num_examples", immediate_msg=immediate_msg)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								def apply_necessary_remediation(df, remediation):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    This function will apply a necessary remediation to a dataframe, or print an error message if one exists.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if remediation.error_msg is not None:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        sys.stderr.write(
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            f"\n\nERROR in {remediation.name} validator: {remediation.error_msg}\n\nAborting..."
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        )
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        sys.exit(1)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if remediation.immediate_msg is not None:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        sys.stdout.write(remediation.immediate_msg)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if remediation.necessary_fn is not None:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        df = remediation.necessary_fn(df)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    return df
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								def accept_suggestion(input_text, auto_accept):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    sys.stdout.write(input_text)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if auto_accept:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        sys.stdout.write("Y\n")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        return True
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    return input().lower() != "n"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								def apply_optional_remediation(df, remediation, auto_accept):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    This function will apply an optional remediation to a dataframe, based on the user input.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    optional_applied = False
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    input_text = f"- [Recommended] {remediation.optional_msg} [Y/n]: "
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if remediation.optional_msg is not None:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        if accept_suggestion(input_text, auto_accept):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            df = remediation.optional_fn(df)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            optional_applied = True
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if remediation.necessary_msg is not None:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        sys.stdout.write(f"- [Necessary] {remediation.necessary_msg}\n")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    return df, optional_applied
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								def estimate_fine_tuning_time(df):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    Estimate the time it'll take to fine-tune the dataset
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    ft_format = infer_task_type(df)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    expected_time = 1.0
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if ft_format == "classification":
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        num_examples = len(df)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        expected_time = num_examples * 1.44
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    else:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        size = df.memory_usage(index=True).sum()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        expected_time = size * 0.0515
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    def format_time(time):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        if time < 60:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            return f"{round(time, 2)} seconds"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        elif time < 3600:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            return f"{round(time / 60, 2)} minutes"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        elif time < 86400:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            return f"{round(time / 3600, 2)} hours"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        else:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            return f"{round(time / 86400, 2)} days"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    time_string = format_time(expected_time + 140)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    sys.stdout.write(
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        f"Once your model starts training, it'll approximately take {time_string} to train a `curie` model, and less for `ada` and `babbage`. Queue will approximately take half an hour per job ahead of you.\n"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    )
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								def get_outfnames(fname, split):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    suffixes = ["_train", "_valid"] if split else [""]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    i = 0
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    while True:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        index_suffix = f" ({i})" if i > 0 else ""
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        candidate_fnames = [
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            os.path.splitext(fname)[0] + "_prepared" + suffix + index_suffix + ".jsonl"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            for suffix in suffixes
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        ]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        if not any(os.path.isfile(f) for f in candidate_fnames):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            return candidate_fnames
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        i += 1
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								def get_classification_hyperparams(df):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    n_classes = df.completion.nunique()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    pos_class = None
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if n_classes == 2:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        pos_class = df.completion.value_counts().index[0]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    return n_classes, pos_class
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								def write_out_file(df, fname, any_remediations, auto_accept):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    This function will write out a dataframe to a file, if the user would like to proceed, and also offer a fine-tuning command with the newly created file.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    For classification it will optionally ask the user if they would like to split the data into train/valid files, and modify the suggested command to include the valid set.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    ft_format = infer_task_type(df)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    common_prompt_suffix = get_common_xfix(df.prompt, xfix="suffix")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    common_completion_suffix = get_common_xfix(df.completion, xfix="suffix")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    split = False
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    input_text = "- [Recommended] Would you like to split into training and validation set? [Y/n]: "
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if ft_format == "classification":
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        if accept_suggestion(input_text, auto_accept):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            split = True
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    additional_params = ""
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    common_prompt_suffix_new_line_handled = common_prompt_suffix.replace("\n", "\\n")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    common_completion_suffix_new_line_handled = common_completion_suffix.replace(
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        "\n", "\\n"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    )
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    optional_ending_string = (
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        f' Make sure to include `stop=["{common_completion_suffix_new_line_handled}"]` so that the generated texts ends at the expected place.'
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        if len(common_completion_suffix_new_line_handled) > 0
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        else ""
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    )
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    input_text = "\n\nYour data will be written to a new JSONL file. Proceed [Y/n]: "
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if not any_remediations and not split:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        sys.stdout.write(
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
										
									
								 | 
							
							
								            f'\nYou can use your file for fine-tuning:\n> openai api fine_tunes.create -t "{fname}"{additional_params}\n\nAfter you’ve fine-tuned a model, remember that your prompt has to end with the indicator string `{common_prompt_suffix_new_line_handled}` for the model to start generating completions, rather than continuing with the prompt.{optional_ending_string}\n'
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        )
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        estimate_fine_tuning_time(df)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    elif accept_suggestion(input_text, auto_accept):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        fnames = get_outfnames(fname, split)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        if split:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            assert len(fnames) == 2 and "train" in fnames[0] and "valid" in fnames[1]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            MAX_VALID_EXAMPLES = 1000
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            n_train = max(len(df) - MAX_VALID_EXAMPLES, int(len(df) * 0.8))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            df_train = df.sample(n=n_train, random_state=42)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            df_valid = df.drop(df_train.index)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            df_train[["prompt", "completion"]].to_json(
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                fnames[0], lines=True, orient="records", force_ascii=False
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            )
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            df_valid[["prompt", "completion"]].to_json(
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                fnames[1], lines=True, orient="records", force_ascii=False
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            )
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            n_classes, pos_class = get_classification_hyperparams(df)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            additional_params += " --compute_classification_metrics"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            if n_classes == 2:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                additional_params += f' --classification_positive_class "{pos_class}"'
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            else:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                additional_params += f" --classification_n_classes {n_classes}"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        else:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            assert len(fnames) == 1
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            df[["prompt", "completion"]].to_json(
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                fnames[0], lines=True, orient="records", force_ascii=False
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            )
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        # Add -v VALID_FILE if we split the file into train / valid
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        files_string = ("s" if split else "") + " to `" + ("` and `".join(fnames))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        valid_string = f' -v "{fnames[1]}"' if split else ""
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        separator_reminder = (
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            ""
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            if len(common_prompt_suffix_new_line_handled) == 0
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
										
									
								 | 
							
							
								            else f"After you’ve fine-tuned a model, remember that your prompt has to end with the indicator string `{common_prompt_suffix_new_line_handled}` for the model to start generating completions, rather than continuing with the prompt."
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        )
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        sys.stdout.write(
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            f'\nWrote modified file{files_string}`\nFeel free to take a look!\n\nNow use that file when fine-tuning:\n> openai api fine_tunes.create -t "{fnames[0]}"{valid_string}{additional_params}\n\n{separator_reminder}{optional_ending_string}\n'
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        )
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        estimate_fine_tuning_time(df)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    else:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        sys.stdout.write("Aborting... did not write the file\n")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								def infer_task_type(df):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    Infer the likely fine-tuning task type from the data
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    CLASSIFICATION_THRESHOLD = 3  # min_average instances of each class
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if sum(df.prompt.str.len()) == 0:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        return "open-ended generation"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if len(df.completion.unique()) < len(df) / CLASSIFICATION_THRESHOLD:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        return "classification"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    return "conditional generation"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								def get_common_xfix(series, xfix="suffix"):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    Finds the longest common suffix or prefix of all the values in a series
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    common_xfix = ""
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    while True:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        common_xfixes = (
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            series.str[-(len(common_xfix) + 1) :]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            if xfix == "suffix"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            else series.str[: len(common_xfix) + 1]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        )  # first few or last few characters
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        if (
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            common_xfixes.nunique() != 1
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        ):  # we found the character at which we don't have a unique xfix anymore
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            break
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        elif (
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            common_xfix == common_xfixes.values[0]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        ):  # the entire first row is a prefix of every other row
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            break
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        else:  # the first or last few characters are still common across all rows - let's try to add one more
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            common_xfix = common_xfixes.values[0]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    return common_xfix
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								def get_validators():
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    return [
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        num_examples_validator,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        lambda x: necessary_column_validator(x, "prompt"),
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        lambda x: necessary_column_validator(x, "completion"),
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        additional_column_validator,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        non_empty_field_validator,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        format_inferrer_validator,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        duplicated_rows_validator,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        long_examples_validator,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        lambda x: lower_case_validator(x, "prompt"),
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        lambda x: lower_case_validator(x, "completion"),
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        common_prompt_suffix_validator,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        common_prompt_prefix_validator,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        common_completion_prefix_validator,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        common_completion_suffix_validator,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        completions_space_start_validator,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    ]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								def apply_validators(
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    df,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    fname,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    remediation,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    validators,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    auto_accept,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    write_out_file_func,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    optional_remediations = []
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if remediation is not None:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        optional_remediations.append(remediation)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    for validator in validators:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        remediation = validator(df)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        if remediation is not None:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            optional_remediations.append(remediation)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            df = apply_necessary_remediation(df, remediation)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    any_optional_or_necessary_remediations = any(
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        [
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            remediation
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            for remediation in optional_remediations
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            if remediation.optional_msg is not None
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            or remediation.necessary_msg is not None
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        ]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    )
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    any_necessary_applied = any(
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        [
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            remediation
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            for remediation in optional_remediations
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            if remediation.necessary_msg is not None
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        ]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    )
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    any_optional_applied = False
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if any_optional_or_necessary_remediations:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        sys.stdout.write(
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            "\n\nBased on the analysis we will perform the following actions:\n"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        )
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        for remediation in optional_remediations:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            df, optional_applied = apply_optional_remediation(
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                df, remediation, auto_accept
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            )
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            any_optional_applied = any_optional_applied or optional_applied
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    else:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        sys.stdout.write("\n\nNo remediations found.\n")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    any_optional_or_necessary_applied = any_optional_applied or any_necessary_applied
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    write_out_file_func(df, fname, any_optional_or_necessary_applied, auto_accept)
							 |