You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

92 lines
3.3 KiB

3 years ago
import base64
import time
from openai import util
from openai.api_resources.abstract.engine_api_resource import EngineAPIResource
from openai.datalib import numpy as np, assert_has_numpy
from openai.error import TryAgain
class Embedding(EngineAPIResource):
OBJECT_NAME = "embeddings"
@classmethod
def create(cls, *args, **kwargs):
"""
Creates a new embedding for the provided input and parameters.
See https://platform.openai.com/docs/api-reference/embeddings for a list
of valid parameters.
"""
start = time.time()
timeout = kwargs.pop("timeout", None)
user_provided_encoding_format = kwargs.get("encoding_format", None)
# If encoding format was not explicitly specified, we opaquely use base64 for performance
if not user_provided_encoding_format:
kwargs["encoding_format"] = "base64"
while True:
try:
response = super().create(*args, **kwargs)
# If a user specifies base64, we'll just return the encoded string.
# This is only for the default case.
if not user_provided_encoding_format:
for data in response.data:
# If an engine isn't using this optimization, don't do anything
if type(data["embedding"]) == str:
assert_has_numpy()
data["embedding"] = np.frombuffer(
base64.b64decode(data["embedding"]), dtype="float32"
).tolist()
return response
except TryAgain as e:
if timeout is not None and time.time() > start + timeout:
raise
util.log_info("Waiting for model to warm up", error=e)
@classmethod
async def acreate(cls, *args, **kwargs):
"""
Creates a new embedding for the provided input and parameters.
See https://platform.openai.com/docs/api-reference/embeddings for a list
of valid parameters.
"""
start = time.time()
timeout = kwargs.pop("timeout", None)
user_provided_encoding_format = kwargs.get("encoding_format", None)
# If encoding format was not explicitly specified, we opaquely use base64 for performance
if not user_provided_encoding_format:
kwargs["encoding_format"] = "base64"
while True:
try:
response = await super().acreate(*args, **kwargs)
# If a user specifies base64, we'll just return the encoded string.
# This is only for the default case.
if not user_provided_encoding_format:
for data in response.data:
# If an engine isn't using this optimization, don't do anything
if type(data["embedding"]) == str:
data["embedding"] = np.frombuffer(
base64.b64decode(data["embedding"]), dtype="float32"
).tolist()
return response
except TryAgain as e:
if timeout is not None and time.time() > start + timeout:
raise
util.log_info("Waiting for model to warm up", error=e)