import base64 import time from openai import util from openai.api_resources.abstract.engine_api_resource import EngineAPIResource from openai.datalib import numpy as np, assert_has_numpy from openai.error import TryAgain class Embedding(EngineAPIResource): OBJECT_NAME = "embeddings" @classmethod def create(cls, *args, **kwargs): """ Creates a new embedding for the provided input and parameters. See https://platform.openai.com/docs/api-reference/embeddings for a list of valid parameters. """ start = time.time() timeout = kwargs.pop("timeout", None) user_provided_encoding_format = kwargs.get("encoding_format", None) # If encoding format was not explicitly specified, we opaquely use base64 for performance if not user_provided_encoding_format: kwargs["encoding_format"] = "base64" while True: try: response = super().create(*args, **kwargs) # If a user specifies base64, we'll just return the encoded string. # This is only for the default case. if not user_provided_encoding_format: for data in response.data: # If an engine isn't using this optimization, don't do anything if type(data["embedding"]) == str: assert_has_numpy() data["embedding"] = np.frombuffer( base64.b64decode(data["embedding"]), dtype="float32" ).tolist() return response except TryAgain as e: if timeout is not None and time.time() > start + timeout: raise util.log_info("Waiting for model to warm up", error=e) @classmethod async def acreate(cls, *args, **kwargs): """ Creates a new embedding for the provided input and parameters. See https://platform.openai.com/docs/api-reference/embeddings for a list of valid parameters. """ start = time.time() timeout = kwargs.pop("timeout", None) user_provided_encoding_format = kwargs.get("encoding_format", None) # If encoding format was not explicitly specified, we opaquely use base64 for performance if not user_provided_encoding_format: kwargs["encoding_format"] = "base64" while True: try: response = await super().acreate(*args, **kwargs) # If a user specifies base64, we'll just return the encoded string. # This is only for the default case. if not user_provided_encoding_format: for data in response.data: # If an engine isn't using this optimization, don't do anything if type(data["embedding"]) == str: data["embedding"] = np.frombuffer( base64.b64decode(data["embedding"]), dtype="float32" ).tolist() return response except TryAgain as e: if timeout is not None and time.time() > start + timeout: raise util.log_info("Waiting for model to warm up", error=e)