You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							414 lines
						
					
					
						
							13 KiB
						
					
					
				
			
		
		
	
	
							414 lines
						
					
					
						
							13 KiB
						
					
					
				# postgresql/array.py
 | 
						|
# Copyright (C) 2005-2022 the SQLAlchemy authors and contributors
 | 
						|
# <see AUTHORS file>
 | 
						|
#
 | 
						|
# This module is part of SQLAlchemy and is released under
 | 
						|
# the MIT License: https://www.opensource.org/licenses/mit-license.php
 | 
						|
 | 
						|
import re
 | 
						|
 | 
						|
from ... import types as sqltypes
 | 
						|
from ... import util
 | 
						|
from ...sql import coercions
 | 
						|
from ...sql import expression
 | 
						|
from ...sql import operators
 | 
						|
from ...sql import roles
 | 
						|
 | 
						|
 | 
						|
def Any(other, arrexpr, operator=operators.eq):
 | 
						|
    """A synonym for the ARRAY-level :meth:`.ARRAY.Comparator.any` method.
 | 
						|
    See that method for details.
 | 
						|
 | 
						|
    """
 | 
						|
 | 
						|
    return arrexpr.any(other, operator)
 | 
						|
 | 
						|
 | 
						|
def All(other, arrexpr, operator=operators.eq):
 | 
						|
    """A synonym for the ARRAY-level :meth:`.ARRAY.Comparator.all` method.
 | 
						|
    See that method for details.
 | 
						|
 | 
						|
    """
 | 
						|
 | 
						|
    return arrexpr.all(other, operator)
 | 
						|
 | 
						|
 | 
						|
class array(expression.ClauseList, expression.ColumnElement):
 | 
						|
 | 
						|
    """A PostgreSQL ARRAY literal.
 | 
						|
 | 
						|
    This is used to produce ARRAY literals in SQL expressions, e.g.::
 | 
						|
 | 
						|
        from sqlalchemy.dialects.postgresql import array
 | 
						|
        from sqlalchemy.dialects import postgresql
 | 
						|
        from sqlalchemy import select, func
 | 
						|
 | 
						|
        stmt = select(array([1,2]) + array([3,4,5]))
 | 
						|
 | 
						|
        print(stmt.compile(dialect=postgresql.dialect()))
 | 
						|
 | 
						|
    Produces the SQL::
 | 
						|
 | 
						|
        SELECT ARRAY[%(param_1)s, %(param_2)s] ||
 | 
						|
            ARRAY[%(param_3)s, %(param_4)s, %(param_5)s]) AS anon_1
 | 
						|
 | 
						|
    An instance of :class:`.array` will always have the datatype
 | 
						|
    :class:`_types.ARRAY`.  The "inner" type of the array is inferred from
 | 
						|
    the values present, unless the ``type_`` keyword argument is passed::
 | 
						|
 | 
						|
        array(['foo', 'bar'], type_=CHAR)
 | 
						|
 | 
						|
    Multidimensional arrays are produced by nesting :class:`.array` constructs.
 | 
						|
    The dimensionality of the final :class:`_types.ARRAY`
 | 
						|
    type is calculated by
 | 
						|
    recursively adding the dimensions of the inner :class:`_types.ARRAY`
 | 
						|
    type::
 | 
						|
 | 
						|
        stmt = select(
 | 
						|
            array([
 | 
						|
                array([1, 2]), array([3, 4]), array([column('q'), column('x')])
 | 
						|
            ])
 | 
						|
        )
 | 
						|
        print(stmt.compile(dialect=postgresql.dialect()))
 | 
						|
 | 
						|
    Produces::
 | 
						|
 | 
						|
        SELECT ARRAY[ARRAY[%(param_1)s, %(param_2)s],
 | 
						|
        ARRAY[%(param_3)s, %(param_4)s], ARRAY[q, x]] AS anon_1
 | 
						|
 | 
						|
    .. versionadded:: 1.3.6 added support for multidimensional array literals
 | 
						|
 | 
						|
    .. seealso::
 | 
						|
 | 
						|
        :class:`_postgresql.ARRAY`
 | 
						|
 | 
						|
    """
 | 
						|
 | 
						|
    __visit_name__ = "array"
 | 
						|
 | 
						|
    stringify_dialect = "postgresql"
 | 
						|
    inherit_cache = True
 | 
						|
 | 
						|
    def __init__(self, clauses, **kw):
 | 
						|
        clauses = [
 | 
						|
            coercions.expect(roles.ExpressionElementRole, c) for c in clauses
 | 
						|
        ]
 | 
						|
 | 
						|
        super(array, self).__init__(*clauses, **kw)
 | 
						|
 | 
						|
        self._type_tuple = [arg.type for arg in clauses]
 | 
						|
        main_type = kw.pop(
 | 
						|
            "type_",
 | 
						|
            self._type_tuple[0] if self._type_tuple else sqltypes.NULLTYPE,
 | 
						|
        )
 | 
						|
 | 
						|
        if isinstance(main_type, ARRAY):
 | 
						|
            self.type = ARRAY(
 | 
						|
                main_type.item_type,
 | 
						|
                dimensions=main_type.dimensions + 1
 | 
						|
                if main_type.dimensions is not None
 | 
						|
                else 2,
 | 
						|
            )
 | 
						|
        else:
 | 
						|
            self.type = ARRAY(main_type)
 | 
						|
 | 
						|
    @property
 | 
						|
    def _select_iterable(self):
 | 
						|
        return (self,)
 | 
						|
 | 
						|
    def _bind_param(self, operator, obj, _assume_scalar=False, type_=None):
 | 
						|
        if _assume_scalar or operator is operators.getitem:
 | 
						|
            return expression.BindParameter(
 | 
						|
                None,
 | 
						|
                obj,
 | 
						|
                _compared_to_operator=operator,
 | 
						|
                type_=type_,
 | 
						|
                _compared_to_type=self.type,
 | 
						|
                unique=True,
 | 
						|
            )
 | 
						|
 | 
						|
        else:
 | 
						|
            return array(
 | 
						|
                [
 | 
						|
                    self._bind_param(
 | 
						|
                        operator, o, _assume_scalar=True, type_=type_
 | 
						|
                    )
 | 
						|
                    for o in obj
 | 
						|
                ]
 | 
						|
            )
 | 
						|
 | 
						|
    def self_group(self, against=None):
 | 
						|
        if against in (operators.any_op, operators.all_op, operators.getitem):
 | 
						|
            return expression.Grouping(self)
 | 
						|
        else:
 | 
						|
            return self
 | 
						|
 | 
						|
 | 
						|
CONTAINS = operators.custom_op("@>", precedence=5, is_comparison=True)
 | 
						|
 | 
						|
CONTAINED_BY = operators.custom_op("<@", precedence=5, is_comparison=True)
 | 
						|
 | 
						|
OVERLAP = operators.custom_op("&&", precedence=5, is_comparison=True)
 | 
						|
 | 
						|
 | 
						|
class ARRAY(sqltypes.ARRAY):
 | 
						|
 | 
						|
    """PostgreSQL ARRAY type.
 | 
						|
 | 
						|
    .. versionchanged:: 1.1 The :class:`_postgresql.ARRAY` type is now
 | 
						|
       a subclass of the core :class:`_types.ARRAY` type.
 | 
						|
 | 
						|
    The :class:`_postgresql.ARRAY` type is constructed in the same way
 | 
						|
    as the core :class:`_types.ARRAY` type; a member type is required, and a
 | 
						|
    number of dimensions is recommended if the type is to be used for more
 | 
						|
    than one dimension::
 | 
						|
 | 
						|
        from sqlalchemy.dialects import postgresql
 | 
						|
 | 
						|
        mytable = Table("mytable", metadata,
 | 
						|
                Column("data", postgresql.ARRAY(Integer, dimensions=2))
 | 
						|
            )
 | 
						|
 | 
						|
    The :class:`_postgresql.ARRAY` type provides all operations defined on the
 | 
						|
    core :class:`_types.ARRAY` type, including support for "dimensions",
 | 
						|
    indexed access, and simple matching such as
 | 
						|
    :meth:`.types.ARRAY.Comparator.any` and
 | 
						|
    :meth:`.types.ARRAY.Comparator.all`.  :class:`_postgresql.ARRAY`
 | 
						|
    class also
 | 
						|
    provides PostgreSQL-specific methods for containment operations, including
 | 
						|
    :meth:`.postgresql.ARRAY.Comparator.contains`
 | 
						|
    :meth:`.postgresql.ARRAY.Comparator.contained_by`, and
 | 
						|
    :meth:`.postgresql.ARRAY.Comparator.overlap`, e.g.::
 | 
						|
 | 
						|
        mytable.c.data.contains([1, 2])
 | 
						|
 | 
						|
    The :class:`_postgresql.ARRAY` type may not be supported on all
 | 
						|
    PostgreSQL DBAPIs; it is currently known to work on psycopg2 only.
 | 
						|
 | 
						|
    Additionally, the :class:`_postgresql.ARRAY`
 | 
						|
    type does not work directly in
 | 
						|
    conjunction with the :class:`.ENUM` type.  For a workaround, see the
 | 
						|
    special type at :ref:`postgresql_array_of_enum`.
 | 
						|
 | 
						|
    .. seealso::
 | 
						|
 | 
						|
        :class:`_types.ARRAY` - base array type
 | 
						|
 | 
						|
        :class:`_postgresql.array` - produces a literal array value.
 | 
						|
 | 
						|
    """
 | 
						|
 | 
						|
    class Comparator(sqltypes.ARRAY.Comparator):
 | 
						|
 | 
						|
        """Define comparison operations for :class:`_types.ARRAY`.
 | 
						|
 | 
						|
        Note that these operations are in addition to those provided
 | 
						|
        by the base :class:`.types.ARRAY.Comparator` class, including
 | 
						|
        :meth:`.types.ARRAY.Comparator.any` and
 | 
						|
        :meth:`.types.ARRAY.Comparator.all`.
 | 
						|
 | 
						|
        """
 | 
						|
 | 
						|
        def contains(self, other, **kwargs):
 | 
						|
            """Boolean expression.  Test if elements are a superset of the
 | 
						|
            elements of the argument array expression.
 | 
						|
 | 
						|
            kwargs may be ignored by this operator but are required for API
 | 
						|
            conformance.
 | 
						|
            """
 | 
						|
            return self.operate(CONTAINS, other, result_type=sqltypes.Boolean)
 | 
						|
 | 
						|
        def contained_by(self, other):
 | 
						|
            """Boolean expression.  Test if elements are a proper subset of the
 | 
						|
            elements of the argument array expression.
 | 
						|
            """
 | 
						|
            return self.operate(
 | 
						|
                CONTAINED_BY, other, result_type=sqltypes.Boolean
 | 
						|
            )
 | 
						|
 | 
						|
        def overlap(self, other):
 | 
						|
            """Boolean expression.  Test if array has elements in common with
 | 
						|
            an argument array expression.
 | 
						|
            """
 | 
						|
            return self.operate(OVERLAP, other, result_type=sqltypes.Boolean)
 | 
						|
 | 
						|
    comparator_factory = Comparator
 | 
						|
 | 
						|
    def __init__(
 | 
						|
        self, item_type, as_tuple=False, dimensions=None, zero_indexes=False
 | 
						|
    ):
 | 
						|
        """Construct an ARRAY.
 | 
						|
 | 
						|
        E.g.::
 | 
						|
 | 
						|
          Column('myarray', ARRAY(Integer))
 | 
						|
 | 
						|
        Arguments are:
 | 
						|
 | 
						|
        :param item_type: The data type of items of this array. Note that
 | 
						|
          dimensionality is irrelevant here, so multi-dimensional arrays like
 | 
						|
          ``INTEGER[][]``, are constructed as ``ARRAY(Integer)``, not as
 | 
						|
          ``ARRAY(ARRAY(Integer))`` or such.
 | 
						|
 | 
						|
        :param as_tuple=False: Specify whether return results
 | 
						|
          should be converted to tuples from lists. DBAPIs such
 | 
						|
          as psycopg2 return lists by default. When tuples are
 | 
						|
          returned, the results are hashable.
 | 
						|
 | 
						|
        :param dimensions: if non-None, the ARRAY will assume a fixed
 | 
						|
         number of dimensions.  This will cause the DDL emitted for this
 | 
						|
         ARRAY to include the exact number of bracket clauses ``[]``,
 | 
						|
         and will also optimize the performance of the type overall.
 | 
						|
         Note that PG arrays are always implicitly "non-dimensioned",
 | 
						|
         meaning they can store any number of dimensions no matter how
 | 
						|
         they were declared.
 | 
						|
 | 
						|
        :param zero_indexes=False: when True, index values will be converted
 | 
						|
         between Python zero-based and PostgreSQL one-based indexes, e.g.
 | 
						|
         a value of one will be added to all index values before passing
 | 
						|
         to the database.
 | 
						|
 | 
						|
         .. versionadded:: 0.9.5
 | 
						|
 | 
						|
 | 
						|
        """
 | 
						|
        if isinstance(item_type, ARRAY):
 | 
						|
            raise ValueError(
 | 
						|
                "Do not nest ARRAY types; ARRAY(basetype) "
 | 
						|
                "handles multi-dimensional arrays of basetype"
 | 
						|
            )
 | 
						|
        if isinstance(item_type, type):
 | 
						|
            item_type = item_type()
 | 
						|
        self.item_type = item_type
 | 
						|
        self.as_tuple = as_tuple
 | 
						|
        self.dimensions = dimensions
 | 
						|
        self.zero_indexes = zero_indexes
 | 
						|
 | 
						|
    @property
 | 
						|
    def hashable(self):
 | 
						|
        return self.as_tuple
 | 
						|
 | 
						|
    @property
 | 
						|
    def python_type(self):
 | 
						|
        return list
 | 
						|
 | 
						|
    def compare_values(self, x, y):
 | 
						|
        return x == y
 | 
						|
 | 
						|
    def _proc_array(self, arr, itemproc, dim, collection):
 | 
						|
        if dim is None:
 | 
						|
            arr = list(arr)
 | 
						|
        if (
 | 
						|
            dim == 1
 | 
						|
            or dim is None
 | 
						|
            and (
 | 
						|
                # this has to be (list, tuple), or at least
 | 
						|
                # not hasattr('__iter__'), since Py3K strings
 | 
						|
                # etc. have __iter__
 | 
						|
                not arr
 | 
						|
                or not isinstance(arr[0], (list, tuple))
 | 
						|
            )
 | 
						|
        ):
 | 
						|
            if itemproc:
 | 
						|
                return collection(itemproc(x) for x in arr)
 | 
						|
            else:
 | 
						|
                return collection(arr)
 | 
						|
        else:
 | 
						|
            return collection(
 | 
						|
                self._proc_array(
 | 
						|
                    x,
 | 
						|
                    itemproc,
 | 
						|
                    dim - 1 if dim is not None else None,
 | 
						|
                    collection,
 | 
						|
                )
 | 
						|
                for x in arr
 | 
						|
            )
 | 
						|
 | 
						|
    @util.memoized_property
 | 
						|
    def _against_native_enum(self):
 | 
						|
        return (
 | 
						|
            isinstance(self.item_type, sqltypes.Enum)
 | 
						|
            and self.item_type.native_enum
 | 
						|
        )
 | 
						|
 | 
						|
    def bind_expression(self, bindvalue):
 | 
						|
        return bindvalue
 | 
						|
 | 
						|
    def bind_processor(self, dialect):
 | 
						|
        item_proc = self.item_type.dialect_impl(dialect).bind_processor(
 | 
						|
            dialect
 | 
						|
        )
 | 
						|
 | 
						|
        def process(value):
 | 
						|
            if value is None:
 | 
						|
                return value
 | 
						|
            else:
 | 
						|
                return self._proc_array(
 | 
						|
                    value, item_proc, self.dimensions, list
 | 
						|
                )
 | 
						|
 | 
						|
        return process
 | 
						|
 | 
						|
    def result_processor(self, dialect, coltype):
 | 
						|
        item_proc = self.item_type.dialect_impl(dialect).result_processor(
 | 
						|
            dialect, coltype
 | 
						|
        )
 | 
						|
 | 
						|
        def process(value):
 | 
						|
            if value is None:
 | 
						|
                return value
 | 
						|
            else:
 | 
						|
                return self._proc_array(
 | 
						|
                    value,
 | 
						|
                    item_proc,
 | 
						|
                    self.dimensions,
 | 
						|
                    tuple if self.as_tuple else list,
 | 
						|
                )
 | 
						|
 | 
						|
        if self._against_native_enum:
 | 
						|
            super_rp = process
 | 
						|
            pattern = re.compile(r"^{(.*)}$")
 | 
						|
 | 
						|
            def handle_raw_string(value):
 | 
						|
                inner = pattern.match(value).group(1)
 | 
						|
                return _split_enum_values(inner)
 | 
						|
 | 
						|
            def process(value):
 | 
						|
                if value is None:
 | 
						|
                    return value
 | 
						|
                # isinstance(value, util.string_types) is required to handle
 | 
						|
                # the case where a TypeDecorator for and Array of Enum is
 | 
						|
                # used like was required in sa < 1.3.17
 | 
						|
                return super_rp(
 | 
						|
                    handle_raw_string(value)
 | 
						|
                    if isinstance(value, util.string_types)
 | 
						|
                    else value
 | 
						|
                )
 | 
						|
 | 
						|
        return process
 | 
						|
 | 
						|
 | 
						|
def _split_enum_values(array_string):
 | 
						|
 | 
						|
    if '"' not in array_string:
 | 
						|
        # no escape char is present so it can just split on the comma
 | 
						|
        return array_string.split(",") if array_string else []
 | 
						|
 | 
						|
    # handles quoted strings from:
 | 
						|
    # r'abc,"quoted","also\\\\quoted", "quoted, comma", "esc \" quot", qpr'
 | 
						|
    # returns
 | 
						|
    # ['abc', 'quoted', 'also\\quoted', 'quoted, comma', 'esc " quot', 'qpr']
 | 
						|
    text = array_string.replace(r"\"", "_$ESC_QUOTE$_")
 | 
						|
    text = text.replace(r"\\", "\\")
 | 
						|
    result = []
 | 
						|
    on_quotes = re.split(r'(")', text)
 | 
						|
    in_quotes = False
 | 
						|
    for tok in on_quotes:
 | 
						|
        if tok == '"':
 | 
						|
            in_quotes = not in_quotes
 | 
						|
        elif in_quotes:
 | 
						|
            result.append(tok.replace("_$ESC_QUOTE$_", '"'))
 | 
						|
        else:
 | 
						|
            result.extend(re.findall(r"([^\s,]+),?", tok))
 | 
						|
    return result
 |