You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					309 lines
				
				13 KiB
			
		
		
			
		
	
	
					309 lines
				
				13 KiB
			| 
								 
											3 years ago
										 
									 | 
							
								import numpy as np
							 | 
						||
| 
								 | 
							
								import pytest
							 | 
						||
| 
								 | 
							
								from numpy.random import random
							 | 
						||
| 
								 | 
							
								from numpy.testing import (
							 | 
						||
| 
								 | 
							
								        assert_array_equal, assert_raises, assert_allclose, IS_WASM
							 | 
						||
| 
								 | 
							
								        )
							 | 
						||
| 
								 | 
							
								import threading
							 | 
						||
| 
								 | 
							
								import queue
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def fft1(x):
							 | 
						||
| 
								 | 
							
								    L = len(x)
							 | 
						||
| 
								 | 
							
								    phase = -2j * np.pi * (np.arange(L) / L)
							 | 
						||
| 
								 | 
							
								    phase = np.arange(L).reshape(-1, 1) * phase
							 | 
						||
| 
								 | 
							
								    return np.sum(x*np.exp(phase), axis=1)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class TestFFTShift:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_fft_n(self):
							 | 
						||
| 
								 | 
							
								        assert_raises(ValueError, np.fft.fft, [1, 2, 3], 0)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class TestFFT1D:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_identity(self):
							 | 
						||
| 
								 | 
							
								        maxlen = 512
							 | 
						||
| 
								 | 
							
								        x = random(maxlen) + 1j*random(maxlen)
							 | 
						||
| 
								 | 
							
								        xr = random(maxlen)
							 | 
						||
| 
								 | 
							
								        for i in range(1, maxlen):
							 | 
						||
| 
								 | 
							
								            assert_allclose(np.fft.ifft(np.fft.fft(x[0:i])), x[0:i],
							 | 
						||
| 
								 | 
							
								                            atol=1e-12)
							 | 
						||
| 
								 | 
							
								            assert_allclose(np.fft.irfft(np.fft.rfft(xr[0:i]), i),
							 | 
						||
| 
								 | 
							
								                            xr[0:i], atol=1e-12)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_fft(self):
							 | 
						||
| 
								 | 
							
								        x = random(30) + 1j*random(30)
							 | 
						||
| 
								 | 
							
								        assert_allclose(fft1(x), np.fft.fft(x), atol=1e-6)
							 | 
						||
| 
								 | 
							
								        assert_allclose(fft1(x), np.fft.fft(x, norm="backward"), atol=1e-6)
							 | 
						||
| 
								 | 
							
								        assert_allclose(fft1(x) / np.sqrt(30),
							 | 
						||
| 
								 | 
							
								                        np.fft.fft(x, norm="ortho"), atol=1e-6)
							 | 
						||
| 
								 | 
							
								        assert_allclose(fft1(x) / 30.,
							 | 
						||
| 
								 | 
							
								                        np.fft.fft(x, norm="forward"), atol=1e-6)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    @pytest.mark.parametrize('norm', (None, 'backward', 'ortho', 'forward'))
							 | 
						||
| 
								 | 
							
								    def test_ifft(self, norm):
							 | 
						||
| 
								 | 
							
								        x = random(30) + 1j*random(30)
							 | 
						||
| 
								 | 
							
								        assert_allclose(
							 | 
						||
| 
								 | 
							
								            x, np.fft.ifft(np.fft.fft(x, norm=norm), norm=norm),
							 | 
						||
| 
								 | 
							
								            atol=1e-6)
							 | 
						||
| 
								 | 
							
								        # Ensure we get the correct error message
							 | 
						||
| 
								 | 
							
								        with pytest.raises(ValueError,
							 | 
						||
| 
								 | 
							
								                           match='Invalid number of FFT data points'):
							 | 
						||
| 
								 | 
							
								            np.fft.ifft([], norm=norm)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_fft2(self):
							 | 
						||
| 
								 | 
							
								        x = random((30, 20)) + 1j*random((30, 20))
							 | 
						||
| 
								 | 
							
								        assert_allclose(np.fft.fft(np.fft.fft(x, axis=1), axis=0),
							 | 
						||
| 
								 | 
							
								                        np.fft.fft2(x), atol=1e-6)
							 | 
						||
| 
								 | 
							
								        assert_allclose(np.fft.fft2(x),
							 | 
						||
| 
								 | 
							
								                        np.fft.fft2(x, norm="backward"), atol=1e-6)
							 | 
						||
| 
								 | 
							
								        assert_allclose(np.fft.fft2(x) / np.sqrt(30 * 20),
							 | 
						||
| 
								 | 
							
								                        np.fft.fft2(x, norm="ortho"), atol=1e-6)
							 | 
						||
| 
								 | 
							
								        assert_allclose(np.fft.fft2(x) / (30. * 20.),
							 | 
						||
| 
								 | 
							
								                        np.fft.fft2(x, norm="forward"), atol=1e-6)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_ifft2(self):
							 | 
						||
| 
								 | 
							
								        x = random((30, 20)) + 1j*random((30, 20))
							 | 
						||
| 
								 | 
							
								        assert_allclose(np.fft.ifft(np.fft.ifft(x, axis=1), axis=0),
							 | 
						||
| 
								 | 
							
								                        np.fft.ifft2(x), atol=1e-6)
							 | 
						||
| 
								 | 
							
								        assert_allclose(np.fft.ifft2(x),
							 | 
						||
| 
								 | 
							
								                        np.fft.ifft2(x, norm="backward"), atol=1e-6)
							 | 
						||
| 
								 | 
							
								        assert_allclose(np.fft.ifft2(x) * np.sqrt(30 * 20),
							 | 
						||
| 
								 | 
							
								                        np.fft.ifft2(x, norm="ortho"), atol=1e-6)
							 | 
						||
| 
								 | 
							
								        assert_allclose(np.fft.ifft2(x) * (30. * 20.),
							 | 
						||
| 
								 | 
							
								                        np.fft.ifft2(x, norm="forward"), atol=1e-6)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_fftn(self):
							 | 
						||
| 
								 | 
							
								        x = random((30, 20, 10)) + 1j*random((30, 20, 10))
							 | 
						||
| 
								 | 
							
								        assert_allclose(
							 | 
						||
| 
								 | 
							
								            np.fft.fft(np.fft.fft(np.fft.fft(x, axis=2), axis=1), axis=0),
							 | 
						||
| 
								 | 
							
								            np.fft.fftn(x), atol=1e-6)
							 | 
						||
| 
								 | 
							
								        assert_allclose(np.fft.fftn(x),
							 | 
						||
| 
								 | 
							
								                        np.fft.fftn(x, norm="backward"), atol=1e-6)
							 | 
						||
| 
								 | 
							
								        assert_allclose(np.fft.fftn(x) / np.sqrt(30 * 20 * 10),
							 | 
						||
| 
								 | 
							
								                        np.fft.fftn(x, norm="ortho"), atol=1e-6)
							 | 
						||
| 
								 | 
							
								        assert_allclose(np.fft.fftn(x) / (30. * 20. * 10.),
							 | 
						||
| 
								 | 
							
								                        np.fft.fftn(x, norm="forward"), atol=1e-6)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_ifftn(self):
							 | 
						||
| 
								 | 
							
								        x = random((30, 20, 10)) + 1j*random((30, 20, 10))
							 | 
						||
| 
								 | 
							
								        assert_allclose(
							 | 
						||
| 
								 | 
							
								            np.fft.ifft(np.fft.ifft(np.fft.ifft(x, axis=2), axis=1), axis=0),
							 | 
						||
| 
								 | 
							
								            np.fft.ifftn(x), atol=1e-6)
							 | 
						||
| 
								 | 
							
								        assert_allclose(np.fft.ifftn(x),
							 | 
						||
| 
								 | 
							
								                        np.fft.ifftn(x, norm="backward"), atol=1e-6)
							 | 
						||
| 
								 | 
							
								        assert_allclose(np.fft.ifftn(x) * np.sqrt(30 * 20 * 10),
							 | 
						||
| 
								 | 
							
								                        np.fft.ifftn(x, norm="ortho"), atol=1e-6)
							 | 
						||
| 
								 | 
							
								        assert_allclose(np.fft.ifftn(x) * (30. * 20. * 10.),
							 | 
						||
| 
								 | 
							
								                        np.fft.ifftn(x, norm="forward"), atol=1e-6)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_rfft(self):
							 | 
						||
| 
								 | 
							
								        x = random(30)
							 | 
						||
| 
								 | 
							
								        for n in [x.size, 2*x.size]:
							 | 
						||
| 
								 | 
							
								            for norm in [None, 'backward', 'ortho', 'forward']:
							 | 
						||
| 
								 | 
							
								                assert_allclose(
							 | 
						||
| 
								 | 
							
								                    np.fft.fft(x, n=n, norm=norm)[:(n//2 + 1)],
							 | 
						||
| 
								 | 
							
								                    np.fft.rfft(x, n=n, norm=norm), atol=1e-6)
							 | 
						||
| 
								 | 
							
								            assert_allclose(
							 | 
						||
| 
								 | 
							
								                np.fft.rfft(x, n=n),
							 | 
						||
| 
								 | 
							
								                np.fft.rfft(x, n=n, norm="backward"), atol=1e-6)
							 | 
						||
| 
								 | 
							
								            assert_allclose(
							 | 
						||
| 
								 | 
							
								                np.fft.rfft(x, n=n) / np.sqrt(n),
							 | 
						||
| 
								 | 
							
								                np.fft.rfft(x, n=n, norm="ortho"), atol=1e-6)
							 | 
						||
| 
								 | 
							
								            assert_allclose(
							 | 
						||
| 
								 | 
							
								                np.fft.rfft(x, n=n) / n,
							 | 
						||
| 
								 | 
							
								                np.fft.rfft(x, n=n, norm="forward"), atol=1e-6)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_irfft(self):
							 | 
						||
| 
								 | 
							
								        x = random(30)
							 | 
						||
| 
								 | 
							
								        assert_allclose(x, np.fft.irfft(np.fft.rfft(x)), atol=1e-6)
							 | 
						||
| 
								 | 
							
								        assert_allclose(x, np.fft.irfft(np.fft.rfft(x, norm="backward"),
							 | 
						||
| 
								 | 
							
								                        norm="backward"), atol=1e-6)
							 | 
						||
| 
								 | 
							
								        assert_allclose(x, np.fft.irfft(np.fft.rfft(x, norm="ortho"),
							 | 
						||
| 
								 | 
							
								                        norm="ortho"), atol=1e-6)
							 | 
						||
| 
								 | 
							
								        assert_allclose(x, np.fft.irfft(np.fft.rfft(x, norm="forward"),
							 | 
						||
| 
								 | 
							
								                        norm="forward"), atol=1e-6)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_rfft2(self):
							 | 
						||
| 
								 | 
							
								        x = random((30, 20))
							 | 
						||
| 
								 | 
							
								        assert_allclose(np.fft.fft2(x)[:, :11], np.fft.rfft2(x), atol=1e-6)
							 | 
						||
| 
								 | 
							
								        assert_allclose(np.fft.rfft2(x),
							 | 
						||
| 
								 | 
							
								                        np.fft.rfft2(x, norm="backward"), atol=1e-6)
							 | 
						||
| 
								 | 
							
								        assert_allclose(np.fft.rfft2(x) / np.sqrt(30 * 20),
							 | 
						||
| 
								 | 
							
								                        np.fft.rfft2(x, norm="ortho"), atol=1e-6)
							 | 
						||
| 
								 | 
							
								        assert_allclose(np.fft.rfft2(x) / (30. * 20.),
							 | 
						||
| 
								 | 
							
								                        np.fft.rfft2(x, norm="forward"), atol=1e-6)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_irfft2(self):
							 | 
						||
| 
								 | 
							
								        x = random((30, 20))
							 | 
						||
| 
								 | 
							
								        assert_allclose(x, np.fft.irfft2(np.fft.rfft2(x)), atol=1e-6)
							 | 
						||
| 
								 | 
							
								        assert_allclose(x, np.fft.irfft2(np.fft.rfft2(x, norm="backward"),
							 | 
						||
| 
								 | 
							
								                        norm="backward"), atol=1e-6)
							 | 
						||
| 
								 | 
							
								        assert_allclose(x, np.fft.irfft2(np.fft.rfft2(x, norm="ortho"),
							 | 
						||
| 
								 | 
							
								                        norm="ortho"), atol=1e-6)
							 | 
						||
| 
								 | 
							
								        assert_allclose(x, np.fft.irfft2(np.fft.rfft2(x, norm="forward"),
							 | 
						||
| 
								 | 
							
								                        norm="forward"), atol=1e-6)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_rfftn(self):
							 | 
						||
| 
								 | 
							
								        x = random((30, 20, 10))
							 | 
						||
| 
								 | 
							
								        assert_allclose(np.fft.fftn(x)[:, :, :6], np.fft.rfftn(x), atol=1e-6)
							 | 
						||
| 
								 | 
							
								        assert_allclose(np.fft.rfftn(x),
							 | 
						||
| 
								 | 
							
								                        np.fft.rfftn(x, norm="backward"), atol=1e-6)
							 | 
						||
| 
								 | 
							
								        assert_allclose(np.fft.rfftn(x) / np.sqrt(30 * 20 * 10),
							 | 
						||
| 
								 | 
							
								                        np.fft.rfftn(x, norm="ortho"), atol=1e-6)
							 | 
						||
| 
								 | 
							
								        assert_allclose(np.fft.rfftn(x) / (30. * 20. * 10.),
							 | 
						||
| 
								 | 
							
								                        np.fft.rfftn(x, norm="forward"), atol=1e-6)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_irfftn(self):
							 | 
						||
| 
								 | 
							
								        x = random((30, 20, 10))
							 | 
						||
| 
								 | 
							
								        assert_allclose(x, np.fft.irfftn(np.fft.rfftn(x)), atol=1e-6)
							 | 
						||
| 
								 | 
							
								        assert_allclose(x, np.fft.irfftn(np.fft.rfftn(x, norm="backward"),
							 | 
						||
| 
								 | 
							
								                        norm="backward"), atol=1e-6)
							 | 
						||
| 
								 | 
							
								        assert_allclose(x, np.fft.irfftn(np.fft.rfftn(x, norm="ortho"),
							 | 
						||
| 
								 | 
							
								                        norm="ortho"), atol=1e-6)
							 | 
						||
| 
								 | 
							
								        assert_allclose(x, np.fft.irfftn(np.fft.rfftn(x, norm="forward"),
							 | 
						||
| 
								 | 
							
								                        norm="forward"), atol=1e-6)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_hfft(self):
							 | 
						||
| 
								 | 
							
								        x = random(14) + 1j*random(14)
							 | 
						||
| 
								 | 
							
								        x_herm = np.concatenate((random(1), x, random(1)))
							 | 
						||
| 
								 | 
							
								        x = np.concatenate((x_herm, x[::-1].conj()))
							 | 
						||
| 
								 | 
							
								        assert_allclose(np.fft.fft(x), np.fft.hfft(x_herm), atol=1e-6)
							 | 
						||
| 
								 | 
							
								        assert_allclose(np.fft.hfft(x_herm),
							 | 
						||
| 
								 | 
							
								                        np.fft.hfft(x_herm, norm="backward"), atol=1e-6)
							 | 
						||
| 
								 | 
							
								        assert_allclose(np.fft.hfft(x_herm) / np.sqrt(30),
							 | 
						||
| 
								 | 
							
								                        np.fft.hfft(x_herm, norm="ortho"), atol=1e-6)
							 | 
						||
| 
								 | 
							
								        assert_allclose(np.fft.hfft(x_herm) / 30.,
							 | 
						||
| 
								 | 
							
								                        np.fft.hfft(x_herm, norm="forward"), atol=1e-6)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_ihfft(self):
							 | 
						||
| 
								 | 
							
								        x = random(14) + 1j*random(14)
							 | 
						||
| 
								 | 
							
								        x_herm = np.concatenate((random(1), x, random(1)))
							 | 
						||
| 
								 | 
							
								        x = np.concatenate((x_herm, x[::-1].conj()))
							 | 
						||
| 
								 | 
							
								        assert_allclose(x_herm, np.fft.ihfft(np.fft.hfft(x_herm)), atol=1e-6)
							 | 
						||
| 
								 | 
							
								        assert_allclose(x_herm, np.fft.ihfft(np.fft.hfft(x_herm,
							 | 
						||
| 
								 | 
							
								                        norm="backward"), norm="backward"), atol=1e-6)
							 | 
						||
| 
								 | 
							
								        assert_allclose(x_herm, np.fft.ihfft(np.fft.hfft(x_herm,
							 | 
						||
| 
								 | 
							
								                        norm="ortho"), norm="ortho"), atol=1e-6)
							 | 
						||
| 
								 | 
							
								        assert_allclose(x_herm, np.fft.ihfft(np.fft.hfft(x_herm,
							 | 
						||
| 
								 | 
							
								                        norm="forward"), norm="forward"), atol=1e-6)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    @pytest.mark.parametrize("op", [np.fft.fftn, np.fft.ifftn,
							 | 
						||
| 
								 | 
							
								                                    np.fft.rfftn, np.fft.irfftn])
							 | 
						||
| 
								 | 
							
								    def test_axes(self, op):
							 | 
						||
| 
								 | 
							
								        x = random((30, 20, 10))
							 | 
						||
| 
								 | 
							
								        axes = [(0, 1, 2), (0, 2, 1), (1, 0, 2), (1, 2, 0), (2, 0, 1), (2, 1, 0)]
							 | 
						||
| 
								 | 
							
								        for a in axes:
							 | 
						||
| 
								 | 
							
								            op_tr = op(np.transpose(x, a))
							 | 
						||
| 
								 | 
							
								            tr_op = np.transpose(op(x, axes=a), a)
							 | 
						||
| 
								 | 
							
								            assert_allclose(op_tr, tr_op, atol=1e-6)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_all_1d_norm_preserving(self):
							 | 
						||
| 
								 | 
							
								        # verify that round-trip transforms are norm-preserving
							 | 
						||
| 
								 | 
							
								        x = random(30)
							 | 
						||
| 
								 | 
							
								        x_norm = np.linalg.norm(x)
							 | 
						||
| 
								 | 
							
								        n = x.size * 2
							 | 
						||
| 
								 | 
							
								        func_pairs = [(np.fft.fft, np.fft.ifft),
							 | 
						||
| 
								 | 
							
								                      (np.fft.rfft, np.fft.irfft),
							 | 
						||
| 
								 | 
							
								                      # hfft: order so the first function takes x.size samples
							 | 
						||
| 
								 | 
							
								                      #       (necessary for comparison to x_norm above)
							 | 
						||
| 
								 | 
							
								                      (np.fft.ihfft, np.fft.hfft),
							 | 
						||
| 
								 | 
							
								                      ]
							 | 
						||
| 
								 | 
							
								        for forw, back in func_pairs:
							 | 
						||
| 
								 | 
							
								            for n in [x.size, 2*x.size]:
							 | 
						||
| 
								 | 
							
								                for norm in [None, 'backward', 'ortho', 'forward']:
							 | 
						||
| 
								 | 
							
								                    tmp = forw(x, n=n, norm=norm)
							 | 
						||
| 
								 | 
							
								                    tmp = back(tmp, n=n, norm=norm)
							 | 
						||
| 
								 | 
							
								                    assert_allclose(x_norm,
							 | 
						||
| 
								 | 
							
								                                    np.linalg.norm(tmp), atol=1e-6)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    @pytest.mark.parametrize("dtype", [np.half, np.single, np.double,
							 | 
						||
| 
								 | 
							
								                                       np.longdouble])
							 | 
						||
| 
								 | 
							
								    def test_dtypes(self, dtype):
							 | 
						||
| 
								 | 
							
								        # make sure that all input precisions are accepted and internally
							 | 
						||
| 
								 | 
							
								        # converted to 64bit
							 | 
						||
| 
								 | 
							
								        x = random(30).astype(dtype)
							 | 
						||
| 
								 | 
							
								        assert_allclose(np.fft.ifft(np.fft.fft(x)), x, atol=1e-6)
							 | 
						||
| 
								 | 
							
								        assert_allclose(np.fft.irfft(np.fft.rfft(x)), x, atol=1e-6)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								@pytest.mark.parametrize(
							 | 
						||
| 
								 | 
							
								        "dtype",
							 | 
						||
| 
								 | 
							
								        [np.float32, np.float64, np.complex64, np.complex128])
							 | 
						||
| 
								 | 
							
								@pytest.mark.parametrize("order", ["F", 'non-contiguous'])
							 | 
						||
| 
								 | 
							
								@pytest.mark.parametrize(
							 | 
						||
| 
								 | 
							
								        "fft",
							 | 
						||
| 
								 | 
							
								        [np.fft.fft, np.fft.fft2, np.fft.fftn,
							 | 
						||
| 
								 | 
							
								         np.fft.ifft, np.fft.ifft2, np.fft.ifftn])
							 | 
						||
| 
								 | 
							
								def test_fft_with_order(dtype, order, fft):
							 | 
						||
| 
								 | 
							
								    # Check that FFT/IFFT produces identical results for C, Fortran and
							 | 
						||
| 
								 | 
							
								    # non contiguous arrays
							 | 
						||
| 
								 | 
							
								    rng = np.random.RandomState(42)
							 | 
						||
| 
								 | 
							
								    X = rng.rand(8, 7, 13).astype(dtype, copy=False)
							 | 
						||
| 
								 | 
							
								    # See discussion in pull/14178
							 | 
						||
| 
								 | 
							
								    _tol = 8.0 * np.sqrt(np.log2(X.size)) * np.finfo(X.dtype).eps
							 | 
						||
| 
								 | 
							
								    if order == 'F':
							 | 
						||
| 
								 | 
							
								        Y = np.asfortranarray(X)
							 | 
						||
| 
								 | 
							
								    else:
							 | 
						||
| 
								 | 
							
								        # Make a non contiguous array
							 | 
						||
| 
								 | 
							
								        Y = X[::-1]
							 | 
						||
| 
								 | 
							
								        X = np.ascontiguousarray(X[::-1])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    if fft.__name__.endswith('fft'):
							 | 
						||
| 
								 | 
							
								        for axis in range(3):
							 | 
						||
| 
								 | 
							
								            X_res = fft(X, axis=axis)
							 | 
						||
| 
								 | 
							
								            Y_res = fft(Y, axis=axis)
							 | 
						||
| 
								 | 
							
								            assert_allclose(X_res, Y_res, atol=_tol, rtol=_tol)
							 | 
						||
| 
								 | 
							
								    elif fft.__name__.endswith(('fft2', 'fftn')):
							 | 
						||
| 
								 | 
							
								        axes = [(0, 1), (1, 2), (0, 2)]
							 | 
						||
| 
								 | 
							
								        if fft.__name__.endswith('fftn'):
							 | 
						||
| 
								 | 
							
								            axes.extend([(0,), (1,), (2,), None])
							 | 
						||
| 
								 | 
							
								        for ax in axes:
							 | 
						||
| 
								 | 
							
								            X_res = fft(X, axes=ax)
							 | 
						||
| 
								 | 
							
								            Y_res = fft(Y, axes=ax)
							 | 
						||
| 
								 | 
							
								            assert_allclose(X_res, Y_res, atol=_tol, rtol=_tol)
							 | 
						||
| 
								 | 
							
								    else:
							 | 
						||
| 
								 | 
							
								        raise ValueError()
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								@pytest.mark.skipif(IS_WASM, reason="Cannot start thread")
							 | 
						||
| 
								 | 
							
								class TestFFTThreadSafe:
							 | 
						||
| 
								 | 
							
								    threads = 16
							 | 
						||
| 
								 | 
							
								    input_shape = (800, 200)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def _test_mtsame(self, func, *args):
							 | 
						||
| 
								 | 
							
								        def worker(args, q):
							 | 
						||
| 
								 | 
							
								            q.put(func(*args))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        q = queue.Queue()
							 | 
						||
| 
								 | 
							
								        expected = func(*args)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        # Spin off a bunch of threads to call the same function simultaneously
							 | 
						||
| 
								 | 
							
								        t = [threading.Thread(target=worker, args=(args, q))
							 | 
						||
| 
								 | 
							
								             for i in range(self.threads)]
							 | 
						||
| 
								 | 
							
								        [x.start() for x in t]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        [x.join() for x in t]
							 | 
						||
| 
								 | 
							
								        # Make sure all threads returned the correct value
							 | 
						||
| 
								 | 
							
								        for i in range(self.threads):
							 | 
						||
| 
								 | 
							
								            assert_array_equal(q.get(timeout=5), expected,
							 | 
						||
| 
								 | 
							
								                'Function returned wrong value in multithreaded context')
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_fft(self):
							 | 
						||
| 
								 | 
							
								        a = np.ones(self.input_shape) * 1+0j
							 | 
						||
| 
								 | 
							
								        self._test_mtsame(np.fft.fft, a)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_ifft(self):
							 | 
						||
| 
								 | 
							
								        a = np.ones(self.input_shape) * 1+0j
							 | 
						||
| 
								 | 
							
								        self._test_mtsame(np.fft.ifft, a)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_rfft(self):
							 | 
						||
| 
								 | 
							
								        a = np.ones(self.input_shape)
							 | 
						||
| 
								 | 
							
								        self._test_mtsame(np.fft.rfft, a)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_irfft(self):
							 | 
						||
| 
								 | 
							
								        a = np.ones(self.input_shape) * 1+0j
							 | 
						||
| 
								 | 
							
								        self._test_mtsame(np.fft.irfft, a)
							 |