You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					2796 lines
				
				87 KiB
			
		
		
			
		
	
	
					2796 lines
				
				87 KiB
			| 
								 
											3 years ago
										 
									 | 
							
								"""Lite version of scipy.linalg.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								Notes
							 | 
						||
| 
								 | 
							
								-----
							 | 
						||
| 
								 | 
							
								This module is a lite version of the linalg.py module in SciPy which
							 | 
						||
| 
								 | 
							
								contains high-level Python interface to the LAPACK library.  The lite
							 | 
						||
| 
								 | 
							
								version only accesses the following LAPACK functions: dgesv, zgesv,
							 | 
						||
| 
								 | 
							
								dgeev, zgeev, dgesdd, zgesdd, dgelsd, zgelsd, dsyevd, zheevd, dgetrf,
							 | 
						||
| 
								 | 
							
								zgetrf, dpotrf, zpotrf, dgeqrf, zgeqrf, zungqr, dorgqr.
							 | 
						||
| 
								 | 
							
								"""
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								__all__ = ['matrix_power', 'solve', 'tensorsolve', 'tensorinv', 'inv',
							 | 
						||
| 
								 | 
							
								           'cholesky', 'eigvals', 'eigvalsh', 'pinv', 'slogdet', 'det',
							 | 
						||
| 
								 | 
							
								           'svd', 'eig', 'eigh', 'lstsq', 'norm', 'qr', 'cond', 'matrix_rank',
							 | 
						||
| 
								 | 
							
								           'LinAlgError', 'multi_dot']
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								import functools
							 | 
						||
| 
								 | 
							
								import operator
							 | 
						||
| 
								 | 
							
								import warnings
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								from numpy.core import (
							 | 
						||
| 
								 | 
							
								    array, asarray, zeros, empty, empty_like, intc, single, double,
							 | 
						||
| 
								 | 
							
								    csingle, cdouble, inexact, complexfloating, newaxis, all, Inf, dot,
							 | 
						||
| 
								 | 
							
								    add, multiply, sqrt, sum, isfinite,
							 | 
						||
| 
								 | 
							
								    finfo, errstate, geterrobj, moveaxis, amin, amax, product, abs,
							 | 
						||
| 
								 | 
							
								    atleast_2d, intp, asanyarray, object_, matmul,
							 | 
						||
| 
								 | 
							
								    swapaxes, divide, count_nonzero, isnan, sign, argsort, sort,
							 | 
						||
| 
								 | 
							
								    reciprocal
							 | 
						||
| 
								 | 
							
								)
							 | 
						||
| 
								 | 
							
								from numpy.core.multiarray import normalize_axis_index
							 | 
						||
| 
								 | 
							
								from numpy.core.overrides import set_module
							 | 
						||
| 
								 | 
							
								from numpy.core import overrides
							 | 
						||
| 
								 | 
							
								from numpy.lib.twodim_base import triu, eye
							 | 
						||
| 
								 | 
							
								from numpy.linalg import _umath_linalg
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								array_function_dispatch = functools.partial(
							 | 
						||
| 
								 | 
							
								    overrides.array_function_dispatch, module='numpy.linalg')
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								fortran_int = intc
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								@set_module('numpy.linalg')
							 | 
						||
| 
								 | 
							
								class LinAlgError(Exception):
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    Generic Python-exception-derived object raised by linalg functions.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    General purpose exception class, derived from Python's exception.Exception
							 | 
						||
| 
								 | 
							
								    class, programmatically raised in linalg functions when a Linear
							 | 
						||
| 
								 | 
							
								    Algebra-related condition would prevent further correct execution of the
							 | 
						||
| 
								 | 
							
								    function.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Parameters
							 | 
						||
| 
								 | 
							
								    ----------
							 | 
						||
| 
								 | 
							
								    None
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Examples
							 | 
						||
| 
								 | 
							
								    --------
							 | 
						||
| 
								 | 
							
								    >>> from numpy import linalg as LA
							 | 
						||
| 
								 | 
							
								    >>> LA.inv(np.zeros((2,2)))
							 | 
						||
| 
								 | 
							
								    Traceback (most recent call last):
							 | 
						||
| 
								 | 
							
								      File "<stdin>", line 1, in <module>
							 | 
						||
| 
								 | 
							
								      File "...linalg.py", line 350,
							 | 
						||
| 
								 | 
							
								        in inv return wrap(solve(a, identity(a.shape[0], dtype=a.dtype)))
							 | 
						||
| 
								 | 
							
								      File "...linalg.py", line 249,
							 | 
						||
| 
								 | 
							
								        in solve
							 | 
						||
| 
								 | 
							
								        raise LinAlgError('Singular matrix')
							 | 
						||
| 
								 | 
							
								    numpy.linalg.LinAlgError: Singular matrix
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def _determine_error_states():
							 | 
						||
| 
								 | 
							
								    errobj = geterrobj()
							 | 
						||
| 
								 | 
							
								    bufsize = errobj[0]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    with errstate(invalid='call', over='ignore',
							 | 
						||
| 
								 | 
							
								                  divide='ignore', under='ignore'):
							 | 
						||
| 
								 | 
							
								        invalid_call_errmask = geterrobj()[1]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    return [bufsize, invalid_call_errmask, None]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								# Dealing with errors in _umath_linalg
							 | 
						||
| 
								 | 
							
								_linalg_error_extobj = _determine_error_states()
							 | 
						||
| 
								 | 
							
								del _determine_error_states
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def _raise_linalgerror_singular(err, flag):
							 | 
						||
| 
								 | 
							
								    raise LinAlgError("Singular matrix")
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def _raise_linalgerror_nonposdef(err, flag):
							 | 
						||
| 
								 | 
							
								    raise LinAlgError("Matrix is not positive definite")
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def _raise_linalgerror_eigenvalues_nonconvergence(err, flag):
							 | 
						||
| 
								 | 
							
								    raise LinAlgError("Eigenvalues did not converge")
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def _raise_linalgerror_svd_nonconvergence(err, flag):
							 | 
						||
| 
								 | 
							
								    raise LinAlgError("SVD did not converge")
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def _raise_linalgerror_lstsq(err, flag):
							 | 
						||
| 
								 | 
							
								    raise LinAlgError("SVD did not converge in Linear Least Squares")
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def _raise_linalgerror_qr(err, flag):
							 | 
						||
| 
								 | 
							
								    raise LinAlgError("Incorrect argument found while performing "
							 | 
						||
| 
								 | 
							
								                      "QR factorization")
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def get_linalg_error_extobj(callback):
							 | 
						||
| 
								 | 
							
								    extobj = list(_linalg_error_extobj)  # make a copy
							 | 
						||
| 
								 | 
							
								    extobj[2] = callback
							 | 
						||
| 
								 | 
							
								    return extobj
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def _makearray(a):
							 | 
						||
| 
								 | 
							
								    new = asarray(a)
							 | 
						||
| 
								 | 
							
								    wrap = getattr(a, "__array_prepare__", new.__array_wrap__)
							 | 
						||
| 
								 | 
							
								    return new, wrap
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def isComplexType(t):
							 | 
						||
| 
								 | 
							
								    return issubclass(t, complexfloating)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								_real_types_map = {single : single,
							 | 
						||
| 
								 | 
							
								                   double : double,
							 | 
						||
| 
								 | 
							
								                   csingle : single,
							 | 
						||
| 
								 | 
							
								                   cdouble : double}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								_complex_types_map = {single : csingle,
							 | 
						||
| 
								 | 
							
								                      double : cdouble,
							 | 
						||
| 
								 | 
							
								                      csingle : csingle,
							 | 
						||
| 
								 | 
							
								                      cdouble : cdouble}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def _realType(t, default=double):
							 | 
						||
| 
								 | 
							
								    return _real_types_map.get(t, default)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def _complexType(t, default=cdouble):
							 | 
						||
| 
								 | 
							
								    return _complex_types_map.get(t, default)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def _commonType(*arrays):
							 | 
						||
| 
								 | 
							
								    # in lite version, use higher precision (always double or cdouble)
							 | 
						||
| 
								 | 
							
								    result_type = single
							 | 
						||
| 
								 | 
							
								    is_complex = False
							 | 
						||
| 
								 | 
							
								    for a in arrays:
							 | 
						||
| 
								 | 
							
								        if issubclass(a.dtype.type, inexact):
							 | 
						||
| 
								 | 
							
								            if isComplexType(a.dtype.type):
							 | 
						||
| 
								 | 
							
								                is_complex = True
							 | 
						||
| 
								 | 
							
								            rt = _realType(a.dtype.type, default=None)
							 | 
						||
| 
								 | 
							
								            if rt is None:
							 | 
						||
| 
								 | 
							
								                # unsupported inexact scalar
							 | 
						||
| 
								 | 
							
								                raise TypeError("array type %s is unsupported in linalg" %
							 | 
						||
| 
								 | 
							
								                        (a.dtype.name,))
							 | 
						||
| 
								 | 
							
								        else:
							 | 
						||
| 
								 | 
							
								            rt = double
							 | 
						||
| 
								 | 
							
								        if rt is double:
							 | 
						||
| 
								 | 
							
								            result_type = double
							 | 
						||
| 
								 | 
							
								    if is_complex:
							 | 
						||
| 
								 | 
							
								        t = cdouble
							 | 
						||
| 
								 | 
							
								        result_type = _complex_types_map[result_type]
							 | 
						||
| 
								 | 
							
								    else:
							 | 
						||
| 
								 | 
							
								        t = double
							 | 
						||
| 
								 | 
							
								    return t, result_type
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def _to_native_byte_order(*arrays):
							 | 
						||
| 
								 | 
							
								    ret = []
							 | 
						||
| 
								 | 
							
								    for arr in arrays:
							 | 
						||
| 
								 | 
							
								        if arr.dtype.byteorder not in ('=', '|'):
							 | 
						||
| 
								 | 
							
								            ret.append(asarray(arr, dtype=arr.dtype.newbyteorder('=')))
							 | 
						||
| 
								 | 
							
								        else:
							 | 
						||
| 
								 | 
							
								            ret.append(arr)
							 | 
						||
| 
								 | 
							
								    if len(ret) == 1:
							 | 
						||
| 
								 | 
							
								        return ret[0]
							 | 
						||
| 
								 | 
							
								    else:
							 | 
						||
| 
								 | 
							
								        return ret
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def _assert_2d(*arrays):
							 | 
						||
| 
								 | 
							
								    for a in arrays:
							 | 
						||
| 
								 | 
							
								        if a.ndim != 2:
							 | 
						||
| 
								 | 
							
								            raise LinAlgError('%d-dimensional array given. Array must be '
							 | 
						||
| 
								 | 
							
								                    'two-dimensional' % a.ndim)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def _assert_stacked_2d(*arrays):
							 | 
						||
| 
								 | 
							
								    for a in arrays:
							 | 
						||
| 
								 | 
							
								        if a.ndim < 2:
							 | 
						||
| 
								 | 
							
								            raise LinAlgError('%d-dimensional array given. Array must be '
							 | 
						||
| 
								 | 
							
								                    'at least two-dimensional' % a.ndim)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def _assert_stacked_square(*arrays):
							 | 
						||
| 
								 | 
							
								    for a in arrays:
							 | 
						||
| 
								 | 
							
								        m, n = a.shape[-2:]
							 | 
						||
| 
								 | 
							
								        if m != n:
							 | 
						||
| 
								 | 
							
								            raise LinAlgError('Last 2 dimensions of the array must be square')
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def _assert_finite(*arrays):
							 | 
						||
| 
								 | 
							
								    for a in arrays:
							 | 
						||
| 
								 | 
							
								        if not isfinite(a).all():
							 | 
						||
| 
								 | 
							
								            raise LinAlgError("Array must not contain infs or NaNs")
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def _is_empty_2d(arr):
							 | 
						||
| 
								 | 
							
								    # check size first for efficiency
							 | 
						||
| 
								 | 
							
								    return arr.size == 0 and product(arr.shape[-2:]) == 0
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def transpose(a):
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    Transpose each matrix in a stack of matrices.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Unlike np.transpose, this only swaps the last two axes, rather than all of
							 | 
						||
| 
								 | 
							
								    them
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Parameters
							 | 
						||
| 
								 | 
							
								    ----------
							 | 
						||
| 
								 | 
							
								    a : (...,M,N) array_like
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Returns
							 | 
						||
| 
								 | 
							
								    -------
							 | 
						||
| 
								 | 
							
								    aT : (...,N,M) ndarray
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    return swapaxes(a, -1, -2)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								# Linear equations
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def _tensorsolve_dispatcher(a, b, axes=None):
							 | 
						||
| 
								 | 
							
								    return (a, b)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								@array_function_dispatch(_tensorsolve_dispatcher)
							 | 
						||
| 
								 | 
							
								def tensorsolve(a, b, axes=None):
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    Solve the tensor equation ``a x = b`` for x.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    It is assumed that all indices of `x` are summed over in the product,
							 | 
						||
| 
								 | 
							
								    together with the rightmost indices of `a`, as is done in, for example,
							 | 
						||
| 
								 | 
							
								    ``tensordot(a, x, axes=x.ndim)``.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Parameters
							 | 
						||
| 
								 | 
							
								    ----------
							 | 
						||
| 
								 | 
							
								    a : array_like
							 | 
						||
| 
								 | 
							
								        Coefficient tensor, of shape ``b.shape + Q``. `Q`, a tuple, equals
							 | 
						||
| 
								 | 
							
								        the shape of that sub-tensor of `a` consisting of the appropriate
							 | 
						||
| 
								 | 
							
								        number of its rightmost indices, and must be such that
							 | 
						||
| 
								 | 
							
								        ``prod(Q) == prod(b.shape)`` (in which sense `a` is said to be
							 | 
						||
| 
								 | 
							
								        'square').
							 | 
						||
| 
								 | 
							
								    b : array_like
							 | 
						||
| 
								 | 
							
								        Right-hand tensor, which can be of any shape.
							 | 
						||
| 
								 | 
							
								    axes : tuple of ints, optional
							 | 
						||
| 
								 | 
							
								        Axes in `a` to reorder to the right, before inversion.
							 | 
						||
| 
								 | 
							
								        If None (default), no reordering is done.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Returns
							 | 
						||
| 
								 | 
							
								    -------
							 | 
						||
| 
								 | 
							
								    x : ndarray, shape Q
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Raises
							 | 
						||
| 
								 | 
							
								    ------
							 | 
						||
| 
								 | 
							
								    LinAlgError
							 | 
						||
| 
								 | 
							
								        If `a` is singular or not 'square' (in the above sense).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    See Also
							 | 
						||
| 
								 | 
							
								    --------
							 | 
						||
| 
								 | 
							
								    numpy.tensordot, tensorinv, numpy.einsum
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Examples
							 | 
						||
| 
								 | 
							
								    --------
							 | 
						||
| 
								 | 
							
								    >>> a = np.eye(2*3*4)
							 | 
						||
| 
								 | 
							
								    >>> a.shape = (2*3, 4, 2, 3, 4)
							 | 
						||
| 
								 | 
							
								    >>> b = np.random.randn(2*3, 4)
							 | 
						||
| 
								 | 
							
								    >>> x = np.linalg.tensorsolve(a, b)
							 | 
						||
| 
								 | 
							
								    >>> x.shape
							 | 
						||
| 
								 | 
							
								    (2, 3, 4)
							 | 
						||
| 
								 | 
							
								    >>> np.allclose(np.tensordot(a, x, axes=3), b)
							 | 
						||
| 
								 | 
							
								    True
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    a, wrap = _makearray(a)
							 | 
						||
| 
								 | 
							
								    b = asarray(b)
							 | 
						||
| 
								 | 
							
								    an = a.ndim
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    if axes is not None:
							 | 
						||
| 
								 | 
							
								        allaxes = list(range(0, an))
							 | 
						||
| 
								 | 
							
								        for k in axes:
							 | 
						||
| 
								 | 
							
								            allaxes.remove(k)
							 | 
						||
| 
								 | 
							
								            allaxes.insert(an, k)
							 | 
						||
| 
								 | 
							
								        a = a.transpose(allaxes)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    oldshape = a.shape[-(an-b.ndim):]
							 | 
						||
| 
								 | 
							
								    prod = 1
							 | 
						||
| 
								 | 
							
								    for k in oldshape:
							 | 
						||
| 
								 | 
							
								        prod *= k
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    if a.size != prod ** 2:
							 | 
						||
| 
								 | 
							
								        raise LinAlgError(
							 | 
						||
| 
								 | 
							
								            "Input arrays must satisfy the requirement \
							 | 
						||
| 
								 | 
							
								            prod(a.shape[b.ndim:]) == prod(a.shape[:b.ndim])"
							 | 
						||
| 
								 | 
							
								        )
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    a = a.reshape(prod, prod)
							 | 
						||
| 
								 | 
							
								    b = b.ravel()
							 | 
						||
| 
								 | 
							
								    res = wrap(solve(a, b))
							 | 
						||
| 
								 | 
							
								    res.shape = oldshape
							 | 
						||
| 
								 | 
							
								    return res
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def _solve_dispatcher(a, b):
							 | 
						||
| 
								 | 
							
								    return (a, b)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								@array_function_dispatch(_solve_dispatcher)
							 | 
						||
| 
								 | 
							
								def solve(a, b):
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    Solve a linear matrix equation, or system of linear scalar equations.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Computes the "exact" solution, `x`, of the well-determined, i.e., full
							 | 
						||
| 
								 | 
							
								    rank, linear matrix equation `ax = b`.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Parameters
							 | 
						||
| 
								 | 
							
								    ----------
							 | 
						||
| 
								 | 
							
								    a : (..., M, M) array_like
							 | 
						||
| 
								 | 
							
								        Coefficient matrix.
							 | 
						||
| 
								 | 
							
								    b : {(..., M,), (..., M, K)}, array_like
							 | 
						||
| 
								 | 
							
								        Ordinate or "dependent variable" values.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Returns
							 | 
						||
| 
								 | 
							
								    -------
							 | 
						||
| 
								 | 
							
								    x : {(..., M,), (..., M, K)} ndarray
							 | 
						||
| 
								 | 
							
								        Solution to the system a x = b.  Returned shape is identical to `b`.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Raises
							 | 
						||
| 
								 | 
							
								    ------
							 | 
						||
| 
								 | 
							
								    LinAlgError
							 | 
						||
| 
								 | 
							
								        If `a` is singular or not square.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    See Also
							 | 
						||
| 
								 | 
							
								    --------
							 | 
						||
| 
								 | 
							
								    scipy.linalg.solve : Similar function in SciPy.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Notes
							 | 
						||
| 
								 | 
							
								    -----
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    .. versionadded:: 1.8.0
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Broadcasting rules apply, see the `numpy.linalg` documentation for
							 | 
						||
| 
								 | 
							
								    details.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    The solutions are computed using LAPACK routine ``_gesv``.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    `a` must be square and of full-rank, i.e., all rows (or, equivalently,
							 | 
						||
| 
								 | 
							
								    columns) must be linearly independent; if either is not true, use
							 | 
						||
| 
								 | 
							
								    `lstsq` for the least-squares best "solution" of the
							 | 
						||
| 
								 | 
							
								    system/equation.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    References
							 | 
						||
| 
								 | 
							
								    ----------
							 | 
						||
| 
								 | 
							
								    .. [1] G. Strang, *Linear Algebra and Its Applications*, 2nd Ed., Orlando,
							 | 
						||
| 
								 | 
							
								           FL, Academic Press, Inc., 1980, pg. 22.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Examples
							 | 
						||
| 
								 | 
							
								    --------
							 | 
						||
| 
								 | 
							
								    Solve the system of equations ``x0 + 2 * x1 = 1`` and ``3 * x0 + 5 * x1 = 2``:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    >>> a = np.array([[1, 2], [3, 5]])
							 | 
						||
| 
								 | 
							
								    >>> b = np.array([1, 2])
							 | 
						||
| 
								 | 
							
								    >>> x = np.linalg.solve(a, b)
							 | 
						||
| 
								 | 
							
								    >>> x
							 | 
						||
| 
								 | 
							
								    array([-1.,  1.])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Check that the solution is correct:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    >>> np.allclose(np.dot(a, x), b)
							 | 
						||
| 
								 | 
							
								    True
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    a, _ = _makearray(a)
							 | 
						||
| 
								 | 
							
								    _assert_stacked_2d(a)
							 | 
						||
| 
								 | 
							
								    _assert_stacked_square(a)
							 | 
						||
| 
								 | 
							
								    b, wrap = _makearray(b)
							 | 
						||
| 
								 | 
							
								    t, result_t = _commonType(a, b)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    # We use the b = (..., M,) logic, only if the number of extra dimensions
							 | 
						||
| 
								 | 
							
								    # match exactly
							 | 
						||
| 
								 | 
							
								    if b.ndim == a.ndim - 1:
							 | 
						||
| 
								 | 
							
								        gufunc = _umath_linalg.solve1
							 | 
						||
| 
								 | 
							
								    else:
							 | 
						||
| 
								 | 
							
								        gufunc = _umath_linalg.solve
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    signature = 'DD->D' if isComplexType(t) else 'dd->d'
							 | 
						||
| 
								 | 
							
								    extobj = get_linalg_error_extobj(_raise_linalgerror_singular)
							 | 
						||
| 
								 | 
							
								    r = gufunc(a, b, signature=signature, extobj=extobj)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    return wrap(r.astype(result_t, copy=False))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def _tensorinv_dispatcher(a, ind=None):
							 | 
						||
| 
								 | 
							
								    return (a,)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								@array_function_dispatch(_tensorinv_dispatcher)
							 | 
						||
| 
								 | 
							
								def tensorinv(a, ind=2):
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    Compute the 'inverse' of an N-dimensional array.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    The result is an inverse for `a` relative to the tensordot operation
							 | 
						||
| 
								 | 
							
								    ``tensordot(a, b, ind)``, i. e., up to floating-point accuracy,
							 | 
						||
| 
								 | 
							
								    ``tensordot(tensorinv(a), a, ind)`` is the "identity" tensor for the
							 | 
						||
| 
								 | 
							
								    tensordot operation.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Parameters
							 | 
						||
| 
								 | 
							
								    ----------
							 | 
						||
| 
								 | 
							
								    a : array_like
							 | 
						||
| 
								 | 
							
								        Tensor to 'invert'. Its shape must be 'square', i. e.,
							 | 
						||
| 
								 | 
							
								        ``prod(a.shape[:ind]) == prod(a.shape[ind:])``.
							 | 
						||
| 
								 | 
							
								    ind : int, optional
							 | 
						||
| 
								 | 
							
								        Number of first indices that are involved in the inverse sum.
							 | 
						||
| 
								 | 
							
								        Must be a positive integer, default is 2.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Returns
							 | 
						||
| 
								 | 
							
								    -------
							 | 
						||
| 
								 | 
							
								    b : ndarray
							 | 
						||
| 
								 | 
							
								        `a`'s tensordot inverse, shape ``a.shape[ind:] + a.shape[:ind]``.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Raises
							 | 
						||
| 
								 | 
							
								    ------
							 | 
						||
| 
								 | 
							
								    LinAlgError
							 | 
						||
| 
								 | 
							
								        If `a` is singular or not 'square' (in the above sense).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    See Also
							 | 
						||
| 
								 | 
							
								    --------
							 | 
						||
| 
								 | 
							
								    numpy.tensordot, tensorsolve
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Examples
							 | 
						||
| 
								 | 
							
								    --------
							 | 
						||
| 
								 | 
							
								    >>> a = np.eye(4*6)
							 | 
						||
| 
								 | 
							
								    >>> a.shape = (4, 6, 8, 3)
							 | 
						||
| 
								 | 
							
								    >>> ainv = np.linalg.tensorinv(a, ind=2)
							 | 
						||
| 
								 | 
							
								    >>> ainv.shape
							 | 
						||
| 
								 | 
							
								    (8, 3, 4, 6)
							 | 
						||
| 
								 | 
							
								    >>> b = np.random.randn(4, 6)
							 | 
						||
| 
								 | 
							
								    >>> np.allclose(np.tensordot(ainv, b), np.linalg.tensorsolve(a, b))
							 | 
						||
| 
								 | 
							
								    True
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    >>> a = np.eye(4*6)
							 | 
						||
| 
								 | 
							
								    >>> a.shape = (24, 8, 3)
							 | 
						||
| 
								 | 
							
								    >>> ainv = np.linalg.tensorinv(a, ind=1)
							 | 
						||
| 
								 | 
							
								    >>> ainv.shape
							 | 
						||
| 
								 | 
							
								    (8, 3, 24)
							 | 
						||
| 
								 | 
							
								    >>> b = np.random.randn(24)
							 | 
						||
| 
								 | 
							
								    >>> np.allclose(np.tensordot(ainv, b, 1), np.linalg.tensorsolve(a, b))
							 | 
						||
| 
								 | 
							
								    True
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    a = asarray(a)
							 | 
						||
| 
								 | 
							
								    oldshape = a.shape
							 | 
						||
| 
								 | 
							
								    prod = 1
							 | 
						||
| 
								 | 
							
								    if ind > 0:
							 | 
						||
| 
								 | 
							
								        invshape = oldshape[ind:] + oldshape[:ind]
							 | 
						||
| 
								 | 
							
								        for k in oldshape[ind:]:
							 | 
						||
| 
								 | 
							
								            prod *= k
							 | 
						||
| 
								 | 
							
								    else:
							 | 
						||
| 
								 | 
							
								        raise ValueError("Invalid ind argument.")
							 | 
						||
| 
								 | 
							
								    a = a.reshape(prod, -1)
							 | 
						||
| 
								 | 
							
								    ia = inv(a)
							 | 
						||
| 
								 | 
							
								    return ia.reshape(*invshape)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								# Matrix inversion
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def _unary_dispatcher(a):
							 | 
						||
| 
								 | 
							
								    return (a,)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								@array_function_dispatch(_unary_dispatcher)
							 | 
						||
| 
								 | 
							
								def inv(a):
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    Compute the (multiplicative) inverse of a matrix.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Given a square matrix `a`, return the matrix `ainv` satisfying
							 | 
						||
| 
								 | 
							
								    ``dot(a, ainv) = dot(ainv, a) = eye(a.shape[0])``.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Parameters
							 | 
						||
| 
								 | 
							
								    ----------
							 | 
						||
| 
								 | 
							
								    a : (..., M, M) array_like
							 | 
						||
| 
								 | 
							
								        Matrix to be inverted.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Returns
							 | 
						||
| 
								 | 
							
								    -------
							 | 
						||
| 
								 | 
							
								    ainv : (..., M, M) ndarray or matrix
							 | 
						||
| 
								 | 
							
								        (Multiplicative) inverse of the matrix `a`.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Raises
							 | 
						||
| 
								 | 
							
								    ------
							 | 
						||
| 
								 | 
							
								    LinAlgError
							 | 
						||
| 
								 | 
							
								        If `a` is not square or inversion fails.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    See Also
							 | 
						||
| 
								 | 
							
								    --------
							 | 
						||
| 
								 | 
							
								    scipy.linalg.inv : Similar function in SciPy.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Notes
							 | 
						||
| 
								 | 
							
								    -----
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    .. versionadded:: 1.8.0
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Broadcasting rules apply, see the `numpy.linalg` documentation for
							 | 
						||
| 
								 | 
							
								    details.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Examples
							 | 
						||
| 
								 | 
							
								    --------
							 | 
						||
| 
								 | 
							
								    >>> from numpy.linalg import inv
							 | 
						||
| 
								 | 
							
								    >>> a = np.array([[1., 2.], [3., 4.]])
							 | 
						||
| 
								 | 
							
								    >>> ainv = inv(a)
							 | 
						||
| 
								 | 
							
								    >>> np.allclose(np.dot(a, ainv), np.eye(2))
							 | 
						||
| 
								 | 
							
								    True
							 | 
						||
| 
								 | 
							
								    >>> np.allclose(np.dot(ainv, a), np.eye(2))
							 | 
						||
| 
								 | 
							
								    True
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    If a is a matrix object, then the return value is a matrix as well:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    >>> ainv = inv(np.matrix(a))
							 | 
						||
| 
								 | 
							
								    >>> ainv
							 | 
						||
| 
								 | 
							
								    matrix([[-2. ,  1. ],
							 | 
						||
| 
								 | 
							
								            [ 1.5, -0.5]])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Inverses of several matrices can be computed at once:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    >>> a = np.array([[[1., 2.], [3., 4.]], [[1, 3], [3, 5]]])
							 | 
						||
| 
								 | 
							
								    >>> inv(a)
							 | 
						||
| 
								 | 
							
								    array([[[-2.  ,  1.  ],
							 | 
						||
| 
								 | 
							
								            [ 1.5 , -0.5 ]],
							 | 
						||
| 
								 | 
							
								           [[-1.25,  0.75],
							 | 
						||
| 
								 | 
							
								            [ 0.75, -0.25]]])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    a, wrap = _makearray(a)
							 | 
						||
| 
								 | 
							
								    _assert_stacked_2d(a)
							 | 
						||
| 
								 | 
							
								    _assert_stacked_square(a)
							 | 
						||
| 
								 | 
							
								    t, result_t = _commonType(a)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    signature = 'D->D' if isComplexType(t) else 'd->d'
							 | 
						||
| 
								 | 
							
								    extobj = get_linalg_error_extobj(_raise_linalgerror_singular)
							 | 
						||
| 
								 | 
							
								    ainv = _umath_linalg.inv(a, signature=signature, extobj=extobj)
							 | 
						||
| 
								 | 
							
								    return wrap(ainv.astype(result_t, copy=False))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def _matrix_power_dispatcher(a, n):
							 | 
						||
| 
								 | 
							
								    return (a,)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								@array_function_dispatch(_matrix_power_dispatcher)
							 | 
						||
| 
								 | 
							
								def matrix_power(a, n):
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    Raise a square matrix to the (integer) power `n`.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    For positive integers `n`, the power is computed by repeated matrix
							 | 
						||
| 
								 | 
							
								    squarings and matrix multiplications. If ``n == 0``, the identity matrix
							 | 
						||
| 
								 | 
							
								    of the same shape as M is returned. If ``n < 0``, the inverse
							 | 
						||
| 
								 | 
							
								    is computed and then raised to the ``abs(n)``.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    .. note:: Stacks of object matrices are not currently supported.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Parameters
							 | 
						||
| 
								 | 
							
								    ----------
							 | 
						||
| 
								 | 
							
								    a : (..., M, M) array_like
							 | 
						||
| 
								 | 
							
								        Matrix to be "powered".
							 | 
						||
| 
								 | 
							
								    n : int
							 | 
						||
| 
								 | 
							
								        The exponent can be any integer or long integer, positive,
							 | 
						||
| 
								 | 
							
								        negative, or zero.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Returns
							 | 
						||
| 
								 | 
							
								    -------
							 | 
						||
| 
								 | 
							
								    a**n : (..., M, M) ndarray or matrix object
							 | 
						||
| 
								 | 
							
								        The return value is the same shape and type as `M`;
							 | 
						||
| 
								 | 
							
								        if the exponent is positive or zero then the type of the
							 | 
						||
| 
								 | 
							
								        elements is the same as those of `M`. If the exponent is
							 | 
						||
| 
								 | 
							
								        negative the elements are floating-point.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Raises
							 | 
						||
| 
								 | 
							
								    ------
							 | 
						||
| 
								 | 
							
								    LinAlgError
							 | 
						||
| 
								 | 
							
								        For matrices that are not square or that (for negative powers) cannot
							 | 
						||
| 
								 | 
							
								        be inverted numerically.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Examples
							 | 
						||
| 
								 | 
							
								    --------
							 | 
						||
| 
								 | 
							
								    >>> from numpy.linalg import matrix_power
							 | 
						||
| 
								 | 
							
								    >>> i = np.array([[0, 1], [-1, 0]]) # matrix equiv. of the imaginary unit
							 | 
						||
| 
								 | 
							
								    >>> matrix_power(i, 3) # should = -i
							 | 
						||
| 
								 | 
							
								    array([[ 0, -1],
							 | 
						||
| 
								 | 
							
								           [ 1,  0]])
							 | 
						||
| 
								 | 
							
								    >>> matrix_power(i, 0)
							 | 
						||
| 
								 | 
							
								    array([[1, 0],
							 | 
						||
| 
								 | 
							
								           [0, 1]])
							 | 
						||
| 
								 | 
							
								    >>> matrix_power(i, -3) # should = 1/(-i) = i, but w/ f.p. elements
							 | 
						||
| 
								 | 
							
								    array([[ 0.,  1.],
							 | 
						||
| 
								 | 
							
								           [-1.,  0.]])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Somewhat more sophisticated example
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    >>> q = np.zeros((4, 4))
							 | 
						||
| 
								 | 
							
								    >>> q[0:2, 0:2] = -i
							 | 
						||
| 
								 | 
							
								    >>> q[2:4, 2:4] = i
							 | 
						||
| 
								 | 
							
								    >>> q # one of the three quaternion units not equal to 1
							 | 
						||
| 
								 | 
							
								    array([[ 0., -1.,  0.,  0.],
							 | 
						||
| 
								 | 
							
								           [ 1.,  0.,  0.,  0.],
							 | 
						||
| 
								 | 
							
								           [ 0.,  0.,  0.,  1.],
							 | 
						||
| 
								 | 
							
								           [ 0.,  0., -1.,  0.]])
							 | 
						||
| 
								 | 
							
								    >>> matrix_power(q, 2) # = -np.eye(4)
							 | 
						||
| 
								 | 
							
								    array([[-1.,  0.,  0.,  0.],
							 | 
						||
| 
								 | 
							
								           [ 0., -1.,  0.,  0.],
							 | 
						||
| 
								 | 
							
								           [ 0.,  0., -1.,  0.],
							 | 
						||
| 
								 | 
							
								           [ 0.,  0.,  0., -1.]])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    a = asanyarray(a)
							 | 
						||
| 
								 | 
							
								    _assert_stacked_2d(a)
							 | 
						||
| 
								 | 
							
								    _assert_stacked_square(a)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    try:
							 | 
						||
| 
								 | 
							
								        n = operator.index(n)
							 | 
						||
| 
								 | 
							
								    except TypeError as e:
							 | 
						||
| 
								 | 
							
								        raise TypeError("exponent must be an integer") from e
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    # Fall back on dot for object arrays. Object arrays are not supported by
							 | 
						||
| 
								 | 
							
								    # the current implementation of matmul using einsum
							 | 
						||
| 
								 | 
							
								    if a.dtype != object:
							 | 
						||
| 
								 | 
							
								        fmatmul = matmul
							 | 
						||
| 
								 | 
							
								    elif a.ndim == 2:
							 | 
						||
| 
								 | 
							
								        fmatmul = dot
							 | 
						||
| 
								 | 
							
								    else:
							 | 
						||
| 
								 | 
							
								        raise NotImplementedError(
							 | 
						||
| 
								 | 
							
								            "matrix_power not supported for stacks of object arrays")
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    if n == 0:
							 | 
						||
| 
								 | 
							
								        a = empty_like(a)
							 | 
						||
| 
								 | 
							
								        a[...] = eye(a.shape[-2], dtype=a.dtype)
							 | 
						||
| 
								 | 
							
								        return a
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    elif n < 0:
							 | 
						||
| 
								 | 
							
								        a = inv(a)
							 | 
						||
| 
								 | 
							
								        n = abs(n)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    # short-cuts.
							 | 
						||
| 
								 | 
							
								    if n == 1:
							 | 
						||
| 
								 | 
							
								        return a
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    elif n == 2:
							 | 
						||
| 
								 | 
							
								        return fmatmul(a, a)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    elif n == 3:
							 | 
						||
| 
								 | 
							
								        return fmatmul(fmatmul(a, a), a)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    # Use binary decomposition to reduce the number of matrix multiplications.
							 | 
						||
| 
								 | 
							
								    # Here, we iterate over the bits of n, from LSB to MSB, raise `a` to
							 | 
						||
| 
								 | 
							
								    # increasing powers of 2, and multiply into the result as needed.
							 | 
						||
| 
								 | 
							
								    z = result = None
							 | 
						||
| 
								 | 
							
								    while n > 0:
							 | 
						||
| 
								 | 
							
								        z = a if z is None else fmatmul(z, z)
							 | 
						||
| 
								 | 
							
								        n, bit = divmod(n, 2)
							 | 
						||
| 
								 | 
							
								        if bit:
							 | 
						||
| 
								 | 
							
								            result = z if result is None else fmatmul(result, z)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    return result
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								# Cholesky decomposition
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								@array_function_dispatch(_unary_dispatcher)
							 | 
						||
| 
								 | 
							
								def cholesky(a):
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    Cholesky decomposition.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Return the Cholesky decomposition, `L * L.H`, of the square matrix `a`,
							 | 
						||
| 
								 | 
							
								    where `L` is lower-triangular and .H is the conjugate transpose operator
							 | 
						||
| 
								 | 
							
								    (which is the ordinary transpose if `a` is real-valued).  `a` must be
							 | 
						||
| 
								 | 
							
								    Hermitian (symmetric if real-valued) and positive-definite. No
							 | 
						||
| 
								 | 
							
								    checking is performed to verify whether `a` is Hermitian or not.
							 | 
						||
| 
								 | 
							
								    In addition, only the lower-triangular and diagonal elements of `a`
							 | 
						||
| 
								 | 
							
								    are used. Only `L` is actually returned.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Parameters
							 | 
						||
| 
								 | 
							
								    ----------
							 | 
						||
| 
								 | 
							
								    a : (..., M, M) array_like
							 | 
						||
| 
								 | 
							
								        Hermitian (symmetric if all elements are real), positive-definite
							 | 
						||
| 
								 | 
							
								        input matrix.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Returns
							 | 
						||
| 
								 | 
							
								    -------
							 | 
						||
| 
								 | 
							
								    L : (..., M, M) array_like
							 | 
						||
| 
								 | 
							
								        Lower-triangular Cholesky factor of `a`.  Returns a matrix object if
							 | 
						||
| 
								 | 
							
								        `a` is a matrix object.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Raises
							 | 
						||
| 
								 | 
							
								    ------
							 | 
						||
| 
								 | 
							
								    LinAlgError
							 | 
						||
| 
								 | 
							
								       If the decomposition fails, for example, if `a` is not
							 | 
						||
| 
								 | 
							
								       positive-definite.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    See Also
							 | 
						||
| 
								 | 
							
								    --------
							 | 
						||
| 
								 | 
							
								    scipy.linalg.cholesky : Similar function in SciPy.
							 | 
						||
| 
								 | 
							
								    scipy.linalg.cholesky_banded : Cholesky decompose a banded Hermitian
							 | 
						||
| 
								 | 
							
								                                   positive-definite matrix.
							 | 
						||
| 
								 | 
							
								    scipy.linalg.cho_factor : Cholesky decomposition of a matrix, to use in
							 | 
						||
| 
								 | 
							
								                              `scipy.linalg.cho_solve`.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Notes
							 | 
						||
| 
								 | 
							
								    -----
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    .. versionadded:: 1.8.0
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Broadcasting rules apply, see the `numpy.linalg` documentation for
							 | 
						||
| 
								 | 
							
								    details.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    The Cholesky decomposition is often used as a fast way of solving
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    .. math:: A \\mathbf{x} = \\mathbf{b}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    (when `A` is both Hermitian/symmetric and positive-definite).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    First, we solve for :math:`\\mathbf{y}` in
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    .. math:: L \\mathbf{y} = \\mathbf{b},
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    and then for :math:`\\mathbf{x}` in
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    .. math:: L.H \\mathbf{x} = \\mathbf{y}.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Examples
							 | 
						||
| 
								 | 
							
								    --------
							 | 
						||
| 
								 | 
							
								    >>> A = np.array([[1,-2j],[2j,5]])
							 | 
						||
| 
								 | 
							
								    >>> A
							 | 
						||
| 
								 | 
							
								    array([[ 1.+0.j, -0.-2.j],
							 | 
						||
| 
								 | 
							
								           [ 0.+2.j,  5.+0.j]])
							 | 
						||
| 
								 | 
							
								    >>> L = np.linalg.cholesky(A)
							 | 
						||
| 
								 | 
							
								    >>> L
							 | 
						||
| 
								 | 
							
								    array([[1.+0.j, 0.+0.j],
							 | 
						||
| 
								 | 
							
								           [0.+2.j, 1.+0.j]])
							 | 
						||
| 
								 | 
							
								    >>> np.dot(L, L.T.conj()) # verify that L * L.H = A
							 | 
						||
| 
								 | 
							
								    array([[1.+0.j, 0.-2.j],
							 | 
						||
| 
								 | 
							
								           [0.+2.j, 5.+0.j]])
							 | 
						||
| 
								 | 
							
								    >>> A = [[1,-2j],[2j,5]] # what happens if A is only array_like?
							 | 
						||
| 
								 | 
							
								    >>> np.linalg.cholesky(A) # an ndarray object is returned
							 | 
						||
| 
								 | 
							
								    array([[1.+0.j, 0.+0.j],
							 | 
						||
| 
								 | 
							
								           [0.+2.j, 1.+0.j]])
							 | 
						||
| 
								 | 
							
								    >>> # But a matrix object is returned if A is a matrix object
							 | 
						||
| 
								 | 
							
								    >>> np.linalg.cholesky(np.matrix(A))
							 | 
						||
| 
								 | 
							
								    matrix([[ 1.+0.j,  0.+0.j],
							 | 
						||
| 
								 | 
							
								            [ 0.+2.j,  1.+0.j]])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    extobj = get_linalg_error_extobj(_raise_linalgerror_nonposdef)
							 | 
						||
| 
								 | 
							
								    gufunc = _umath_linalg.cholesky_lo
							 | 
						||
| 
								 | 
							
								    a, wrap = _makearray(a)
							 | 
						||
| 
								 | 
							
								    _assert_stacked_2d(a)
							 | 
						||
| 
								 | 
							
								    _assert_stacked_square(a)
							 | 
						||
| 
								 | 
							
								    t, result_t = _commonType(a)
							 | 
						||
| 
								 | 
							
								    signature = 'D->D' if isComplexType(t) else 'd->d'
							 | 
						||
| 
								 | 
							
								    r = gufunc(a, signature=signature, extobj=extobj)
							 | 
						||
| 
								 | 
							
								    return wrap(r.astype(result_t, copy=False))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								# QR decomposition
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def _qr_dispatcher(a, mode=None):
							 | 
						||
| 
								 | 
							
								    return (a,)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								@array_function_dispatch(_qr_dispatcher)
							 | 
						||
| 
								 | 
							
								def qr(a, mode='reduced'):
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    Compute the qr factorization of a matrix.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Factor the matrix `a` as *qr*, where `q` is orthonormal and `r` is
							 | 
						||
| 
								 | 
							
								    upper-triangular.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Parameters
							 | 
						||
| 
								 | 
							
								    ----------
							 | 
						||
| 
								 | 
							
								    a : array_like, shape (..., M, N)
							 | 
						||
| 
								 | 
							
								        An array-like object with the dimensionality of at least 2.
							 | 
						||
| 
								 | 
							
								    mode : {'reduced', 'complete', 'r', 'raw'}, optional
							 | 
						||
| 
								 | 
							
								        If K = min(M, N), then
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        * 'reduced'  : returns q, r with dimensions
							 | 
						||
| 
								 | 
							
								                       (..., M, K), (..., K, N) (default)
							 | 
						||
| 
								 | 
							
								        * 'complete' : returns q, r with dimensions (..., M, M), (..., M, N)
							 | 
						||
| 
								 | 
							
								        * 'r'        : returns r only with dimensions (..., K, N)
							 | 
						||
| 
								 | 
							
								        * 'raw'      : returns h, tau with dimensions (..., N, M), (..., K,)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        The options 'reduced', 'complete, and 'raw' are new in numpy 1.8,
							 | 
						||
| 
								 | 
							
								        see the notes for more information. The default is 'reduced', and to
							 | 
						||
| 
								 | 
							
								        maintain backward compatibility with earlier versions of numpy both
							 | 
						||
| 
								 | 
							
								        it and the old default 'full' can be omitted. Note that array h
							 | 
						||
| 
								 | 
							
								        returned in 'raw' mode is transposed for calling Fortran. The
							 | 
						||
| 
								 | 
							
								        'economic' mode is deprecated.  The modes 'full' and 'economic' may
							 | 
						||
| 
								 | 
							
								        be passed using only the first letter for backwards compatibility,
							 | 
						||
| 
								 | 
							
								        but all others must be spelled out. See the Notes for more
							 | 
						||
| 
								 | 
							
								        explanation.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Returns
							 | 
						||
| 
								 | 
							
								    -------
							 | 
						||
| 
								 | 
							
								    q : ndarray of float or complex, optional
							 | 
						||
| 
								 | 
							
								        A matrix with orthonormal columns. When mode = 'complete' the
							 | 
						||
| 
								 | 
							
								        result is an orthogonal/unitary matrix depending on whether or not
							 | 
						||
| 
								 | 
							
								        a is real/complex. The determinant may be either +/- 1 in that
							 | 
						||
| 
								 | 
							
								        case. In case the number of dimensions in the input array is
							 | 
						||
| 
								 | 
							
								        greater than 2 then a stack of the matrices with above properties
							 | 
						||
| 
								 | 
							
								        is returned.
							 | 
						||
| 
								 | 
							
								    r : ndarray of float or complex, optional
							 | 
						||
| 
								 | 
							
								        The upper-triangular matrix or a stack of upper-triangular
							 | 
						||
| 
								 | 
							
								        matrices if the number of dimensions in the input array is greater
							 | 
						||
| 
								 | 
							
								        than 2.
							 | 
						||
| 
								 | 
							
								    (h, tau) : ndarrays of np.double or np.cdouble, optional
							 | 
						||
| 
								 | 
							
								        The array h contains the Householder reflectors that generate q
							 | 
						||
| 
								 | 
							
								        along with r. The tau array contains scaling factors for the
							 | 
						||
| 
								 | 
							
								        reflectors. In the deprecated  'economic' mode only h is returned.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Raises
							 | 
						||
| 
								 | 
							
								    ------
							 | 
						||
| 
								 | 
							
								    LinAlgError
							 | 
						||
| 
								 | 
							
								        If factoring fails.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    See Also
							 | 
						||
| 
								 | 
							
								    --------
							 | 
						||
| 
								 | 
							
								    scipy.linalg.qr : Similar function in SciPy.
							 | 
						||
| 
								 | 
							
								    scipy.linalg.rq : Compute RQ decomposition of a matrix.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Notes
							 | 
						||
| 
								 | 
							
								    -----
							 | 
						||
| 
								 | 
							
								    This is an interface to the LAPACK routines ``dgeqrf``, ``zgeqrf``,
							 | 
						||
| 
								 | 
							
								    ``dorgqr``, and ``zungqr``.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    For more information on the qr factorization, see for example:
							 | 
						||
| 
								 | 
							
								    https://en.wikipedia.org/wiki/QR_factorization
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Subclasses of `ndarray` are preserved except for the 'raw' mode. So if
							 | 
						||
| 
								 | 
							
								    `a` is of type `matrix`, all the return values will be matrices too.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    New 'reduced', 'complete', and 'raw' options for mode were added in
							 | 
						||
| 
								 | 
							
								    NumPy 1.8.0 and the old option 'full' was made an alias of 'reduced'.  In
							 | 
						||
| 
								 | 
							
								    addition the options 'full' and 'economic' were deprecated.  Because
							 | 
						||
| 
								 | 
							
								    'full' was the previous default and 'reduced' is the new default,
							 | 
						||
| 
								 | 
							
								    backward compatibility can be maintained by letting `mode` default.
							 | 
						||
| 
								 | 
							
								    The 'raw' option was added so that LAPACK routines that can multiply
							 | 
						||
| 
								 | 
							
								    arrays by q using the Householder reflectors can be used. Note that in
							 | 
						||
| 
								 | 
							
								    this case the returned arrays are of type np.double or np.cdouble and
							 | 
						||
| 
								 | 
							
								    the h array is transposed to be FORTRAN compatible.  No routines using
							 | 
						||
| 
								 | 
							
								    the 'raw' return are currently exposed by numpy, but some are available
							 | 
						||
| 
								 | 
							
								    in lapack_lite and just await the necessary work.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Examples
							 | 
						||
| 
								 | 
							
								    --------
							 | 
						||
| 
								 | 
							
								    >>> a = np.random.randn(9, 6)
							 | 
						||
| 
								 | 
							
								    >>> q, r = np.linalg.qr(a)
							 | 
						||
| 
								 | 
							
								    >>> np.allclose(a, np.dot(q, r))  # a does equal qr
							 | 
						||
| 
								 | 
							
								    True
							 | 
						||
| 
								 | 
							
								    >>> r2 = np.linalg.qr(a, mode='r')
							 | 
						||
| 
								 | 
							
								    >>> np.allclose(r, r2)  # mode='r' returns the same r as mode='full'
							 | 
						||
| 
								 | 
							
								    True
							 | 
						||
| 
								 | 
							
								    >>> a = np.random.normal(size=(3, 2, 2)) # Stack of 2 x 2 matrices as input
							 | 
						||
| 
								 | 
							
								    >>> q, r = np.linalg.qr(a)
							 | 
						||
| 
								 | 
							
								    >>> q.shape
							 | 
						||
| 
								 | 
							
								    (3, 2, 2)
							 | 
						||
| 
								 | 
							
								    >>> r.shape
							 | 
						||
| 
								 | 
							
								    (3, 2, 2)
							 | 
						||
| 
								 | 
							
								    >>> np.allclose(a, np.matmul(q, r))
							 | 
						||
| 
								 | 
							
								    True
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Example illustrating a common use of `qr`: solving of least squares
							 | 
						||
| 
								 | 
							
								    problems
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    What are the least-squares-best `m` and `y0` in ``y = y0 + mx`` for
							 | 
						||
| 
								 | 
							
								    the following data: {(0,1), (1,0), (1,2), (2,1)}. (Graph the points
							 | 
						||
| 
								 | 
							
								    and you'll see that it should be y0 = 0, m = 1.)  The answer is provided
							 | 
						||
| 
								 | 
							
								    by solving the over-determined matrix equation ``Ax = b``, where::
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								      A = array([[0, 1], [1, 1], [1, 1], [2, 1]])
							 | 
						||
| 
								 | 
							
								      x = array([[y0], [m]])
							 | 
						||
| 
								 | 
							
								      b = array([[1], [0], [2], [1]])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    If A = qr such that q is orthonormal (which is always possible via
							 | 
						||
| 
								 | 
							
								    Gram-Schmidt), then ``x = inv(r) * (q.T) * b``.  (In numpy practice,
							 | 
						||
| 
								 | 
							
								    however, we simply use `lstsq`.)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    >>> A = np.array([[0, 1], [1, 1], [1, 1], [2, 1]])
							 | 
						||
| 
								 | 
							
								    >>> A
							 | 
						||
| 
								 | 
							
								    array([[0, 1],
							 | 
						||
| 
								 | 
							
								           [1, 1],
							 | 
						||
| 
								 | 
							
								           [1, 1],
							 | 
						||
| 
								 | 
							
								           [2, 1]])
							 | 
						||
| 
								 | 
							
								    >>> b = np.array([1, 2, 2, 3])
							 | 
						||
| 
								 | 
							
								    >>> q, r = np.linalg.qr(A)
							 | 
						||
| 
								 | 
							
								    >>> p = np.dot(q.T, b)
							 | 
						||
| 
								 | 
							
								    >>> np.dot(np.linalg.inv(r), p)
							 | 
						||
| 
								 | 
							
								    array([  1.,   1.])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    if mode not in ('reduced', 'complete', 'r', 'raw'):
							 | 
						||
| 
								 | 
							
								        if mode in ('f', 'full'):
							 | 
						||
| 
								 | 
							
								            # 2013-04-01, 1.8
							 | 
						||
| 
								 | 
							
								            msg = "".join((
							 | 
						||
| 
								 | 
							
								                    "The 'full' option is deprecated in favor of 'reduced'.\n",
							 | 
						||
| 
								 | 
							
								                    "For backward compatibility let mode default."))
							 | 
						||
| 
								 | 
							
								            warnings.warn(msg, DeprecationWarning, stacklevel=3)
							 | 
						||
| 
								 | 
							
								            mode = 'reduced'
							 | 
						||
| 
								 | 
							
								        elif mode in ('e', 'economic'):
							 | 
						||
| 
								 | 
							
								            # 2013-04-01, 1.8
							 | 
						||
| 
								 | 
							
								            msg = "The 'economic' option is deprecated."
							 | 
						||
| 
								 | 
							
								            warnings.warn(msg, DeprecationWarning, stacklevel=3)
							 | 
						||
| 
								 | 
							
								            mode = 'economic'
							 | 
						||
| 
								 | 
							
								        else:
							 | 
						||
| 
								 | 
							
								            raise ValueError(f"Unrecognized mode '{mode}'")
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    a, wrap = _makearray(a)
							 | 
						||
| 
								 | 
							
								    _assert_stacked_2d(a)
							 | 
						||
| 
								 | 
							
								    m, n = a.shape[-2:]
							 | 
						||
| 
								 | 
							
								    t, result_t = _commonType(a)
							 | 
						||
| 
								 | 
							
								    a = a.astype(t, copy=True)
							 | 
						||
| 
								 | 
							
								    a = _to_native_byte_order(a)
							 | 
						||
| 
								 | 
							
								    mn = min(m, n)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    if m <= n:
							 | 
						||
| 
								 | 
							
								        gufunc = _umath_linalg.qr_r_raw_m
							 | 
						||
| 
								 | 
							
								    else:
							 | 
						||
| 
								 | 
							
								        gufunc = _umath_linalg.qr_r_raw_n
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    signature = 'D->D' if isComplexType(t) else 'd->d'
							 | 
						||
| 
								 | 
							
								    extobj = get_linalg_error_extobj(_raise_linalgerror_qr)
							 | 
						||
| 
								 | 
							
								    tau = gufunc(a, signature=signature, extobj=extobj)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    # handle modes that don't return q
							 | 
						||
| 
								 | 
							
								    if mode == 'r':
							 | 
						||
| 
								 | 
							
								        r = triu(a[..., :mn, :])
							 | 
						||
| 
								 | 
							
								        r = r.astype(result_t, copy=False)
							 | 
						||
| 
								 | 
							
								        return wrap(r)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    if mode == 'raw':
							 | 
						||
| 
								 | 
							
								        q = transpose(a)
							 | 
						||
| 
								 | 
							
								        q = q.astype(result_t, copy=False)
							 | 
						||
| 
								 | 
							
								        tau = tau.astype(result_t, copy=False)
							 | 
						||
| 
								 | 
							
								        return wrap(q), tau
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    if mode == 'economic':
							 | 
						||
| 
								 | 
							
								        a = a.astype(result_t, copy=False)
							 | 
						||
| 
								 | 
							
								        return wrap(a)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    # mc is the number of columns in the resulting q
							 | 
						||
| 
								 | 
							
								    # matrix. If the mode is complete then it is 
							 | 
						||
| 
								 | 
							
								    # same as number of rows, and if the mode is reduced,
							 | 
						||
| 
								 | 
							
								    # then it is the minimum of number of rows and columns.
							 | 
						||
| 
								 | 
							
								    if mode == 'complete' and m > n:
							 | 
						||
| 
								 | 
							
								        mc = m
							 | 
						||
| 
								 | 
							
								        gufunc = _umath_linalg.qr_complete
							 | 
						||
| 
								 | 
							
								    else:
							 | 
						||
| 
								 | 
							
								        mc = mn
							 | 
						||
| 
								 | 
							
								        gufunc = _umath_linalg.qr_reduced
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    signature = 'DD->D' if isComplexType(t) else 'dd->d'
							 | 
						||
| 
								 | 
							
								    extobj = get_linalg_error_extobj(_raise_linalgerror_qr)
							 | 
						||
| 
								 | 
							
								    q = gufunc(a, tau, signature=signature, extobj=extobj)
							 | 
						||
| 
								 | 
							
								    r = triu(a[..., :mc, :])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    q = q.astype(result_t, copy=False)
							 | 
						||
| 
								 | 
							
								    r = r.astype(result_t, copy=False)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    return wrap(q), wrap(r)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								# Eigenvalues
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								@array_function_dispatch(_unary_dispatcher)
							 | 
						||
| 
								 | 
							
								def eigvals(a):
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    Compute the eigenvalues of a general matrix.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Main difference between `eigvals` and `eig`: the eigenvectors aren't
							 | 
						||
| 
								 | 
							
								    returned.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Parameters
							 | 
						||
| 
								 | 
							
								    ----------
							 | 
						||
| 
								 | 
							
								    a : (..., M, M) array_like
							 | 
						||
| 
								 | 
							
								        A complex- or real-valued matrix whose eigenvalues will be computed.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Returns
							 | 
						||
| 
								 | 
							
								    -------
							 | 
						||
| 
								 | 
							
								    w : (..., M,) ndarray
							 | 
						||
| 
								 | 
							
								        The eigenvalues, each repeated according to its multiplicity.
							 | 
						||
| 
								 | 
							
								        They are not necessarily ordered, nor are they necessarily
							 | 
						||
| 
								 | 
							
								        real for real matrices.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Raises
							 | 
						||
| 
								 | 
							
								    ------
							 | 
						||
| 
								 | 
							
								    LinAlgError
							 | 
						||
| 
								 | 
							
								        If the eigenvalue computation does not converge.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    See Also
							 | 
						||
| 
								 | 
							
								    --------
							 | 
						||
| 
								 | 
							
								    eig : eigenvalues and right eigenvectors of general arrays
							 | 
						||
| 
								 | 
							
								    eigvalsh : eigenvalues of real symmetric or complex Hermitian
							 | 
						||
| 
								 | 
							
								               (conjugate symmetric) arrays.
							 | 
						||
| 
								 | 
							
								    eigh : eigenvalues and eigenvectors of real symmetric or complex
							 | 
						||
| 
								 | 
							
								           Hermitian (conjugate symmetric) arrays.
							 | 
						||
| 
								 | 
							
								    scipy.linalg.eigvals : Similar function in SciPy.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Notes
							 | 
						||
| 
								 | 
							
								    -----
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    .. versionadded:: 1.8.0
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Broadcasting rules apply, see the `numpy.linalg` documentation for
							 | 
						||
| 
								 | 
							
								    details.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    This is implemented using the ``_geev`` LAPACK routines which compute
							 | 
						||
| 
								 | 
							
								    the eigenvalues and eigenvectors of general square arrays.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Examples
							 | 
						||
| 
								 | 
							
								    --------
							 | 
						||
| 
								 | 
							
								    Illustration, using the fact that the eigenvalues of a diagonal matrix
							 | 
						||
| 
								 | 
							
								    are its diagonal elements, that multiplying a matrix on the left
							 | 
						||
| 
								 | 
							
								    by an orthogonal matrix, `Q`, and on the right by `Q.T` (the transpose
							 | 
						||
| 
								 | 
							
								    of `Q`), preserves the eigenvalues of the "middle" matrix.  In other words,
							 | 
						||
| 
								 | 
							
								    if `Q` is orthogonal, then ``Q * A * Q.T`` has the same eigenvalues as
							 | 
						||
| 
								 | 
							
								    ``A``:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    >>> from numpy import linalg as LA
							 | 
						||
| 
								 | 
							
								    >>> x = np.random.random()
							 | 
						||
| 
								 | 
							
								    >>> Q = np.array([[np.cos(x), -np.sin(x)], [np.sin(x), np.cos(x)]])
							 | 
						||
| 
								 | 
							
								    >>> LA.norm(Q[0, :]), LA.norm(Q[1, :]), np.dot(Q[0, :],Q[1, :])
							 | 
						||
| 
								 | 
							
								    (1.0, 1.0, 0.0)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Now multiply a diagonal matrix by ``Q`` on one side and by ``Q.T`` on the other:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    >>> D = np.diag((-1,1))
							 | 
						||
| 
								 | 
							
								    >>> LA.eigvals(D)
							 | 
						||
| 
								 | 
							
								    array([-1.,  1.])
							 | 
						||
| 
								 | 
							
								    >>> A = np.dot(Q, D)
							 | 
						||
| 
								 | 
							
								    >>> A = np.dot(A, Q.T)
							 | 
						||
| 
								 | 
							
								    >>> LA.eigvals(A)
							 | 
						||
| 
								 | 
							
								    array([ 1., -1.]) # random
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    a, wrap = _makearray(a)
							 | 
						||
| 
								 | 
							
								    _assert_stacked_2d(a)
							 | 
						||
| 
								 | 
							
								    _assert_stacked_square(a)
							 | 
						||
| 
								 | 
							
								    _assert_finite(a)
							 | 
						||
| 
								 | 
							
								    t, result_t = _commonType(a)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    extobj = get_linalg_error_extobj(
							 | 
						||
| 
								 | 
							
								        _raise_linalgerror_eigenvalues_nonconvergence)
							 | 
						||
| 
								 | 
							
								    signature = 'D->D' if isComplexType(t) else 'd->D'
							 | 
						||
| 
								 | 
							
								    w = _umath_linalg.eigvals(a, signature=signature, extobj=extobj)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    if not isComplexType(t):
							 | 
						||
| 
								 | 
							
								        if all(w.imag == 0):
							 | 
						||
| 
								 | 
							
								            w = w.real
							 | 
						||
| 
								 | 
							
								            result_t = _realType(result_t)
							 | 
						||
| 
								 | 
							
								        else:
							 | 
						||
| 
								 | 
							
								            result_t = _complexType(result_t)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    return w.astype(result_t, copy=False)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def _eigvalsh_dispatcher(a, UPLO=None):
							 | 
						||
| 
								 | 
							
								    return (a,)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								@array_function_dispatch(_eigvalsh_dispatcher)
							 | 
						||
| 
								 | 
							
								def eigvalsh(a, UPLO='L'):
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    Compute the eigenvalues of a complex Hermitian or real symmetric matrix.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Main difference from eigh: the eigenvectors are not computed.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Parameters
							 | 
						||
| 
								 | 
							
								    ----------
							 | 
						||
| 
								 | 
							
								    a : (..., M, M) array_like
							 | 
						||
| 
								 | 
							
								        A complex- or real-valued matrix whose eigenvalues are to be
							 | 
						||
| 
								 | 
							
								        computed.
							 | 
						||
| 
								 | 
							
								    UPLO : {'L', 'U'}, optional
							 | 
						||
| 
								 | 
							
								        Specifies whether the calculation is done with the lower triangular
							 | 
						||
| 
								 | 
							
								        part of `a` ('L', default) or the upper triangular part ('U').
							 | 
						||
| 
								 | 
							
								        Irrespective of this value only the real parts of the diagonal will
							 | 
						||
| 
								 | 
							
								        be considered in the computation to preserve the notion of a Hermitian
							 | 
						||
| 
								 | 
							
								        matrix. It therefore follows that the imaginary part of the diagonal
							 | 
						||
| 
								 | 
							
								        will always be treated as zero.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Returns
							 | 
						||
| 
								 | 
							
								    -------
							 | 
						||
| 
								 | 
							
								    w : (..., M,) ndarray
							 | 
						||
| 
								 | 
							
								        The eigenvalues in ascending order, each repeated according to
							 | 
						||
| 
								 | 
							
								        its multiplicity.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Raises
							 | 
						||
| 
								 | 
							
								    ------
							 | 
						||
| 
								 | 
							
								    LinAlgError
							 | 
						||
| 
								 | 
							
								        If the eigenvalue computation does not converge.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    See Also
							 | 
						||
| 
								 | 
							
								    --------
							 | 
						||
| 
								 | 
							
								    eigh : eigenvalues and eigenvectors of real symmetric or complex Hermitian
							 | 
						||
| 
								 | 
							
								           (conjugate symmetric) arrays.
							 | 
						||
| 
								 | 
							
								    eigvals : eigenvalues of general real or complex arrays.
							 | 
						||
| 
								 | 
							
								    eig : eigenvalues and right eigenvectors of general real or complex
							 | 
						||
| 
								 | 
							
								          arrays.
							 | 
						||
| 
								 | 
							
								    scipy.linalg.eigvalsh : Similar function in SciPy.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Notes
							 | 
						||
| 
								 | 
							
								    -----
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    .. versionadded:: 1.8.0
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Broadcasting rules apply, see the `numpy.linalg` documentation for
							 | 
						||
| 
								 | 
							
								    details.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    The eigenvalues are computed using LAPACK routines ``_syevd``, ``_heevd``.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Examples
							 | 
						||
| 
								 | 
							
								    --------
							 | 
						||
| 
								 | 
							
								    >>> from numpy import linalg as LA
							 | 
						||
| 
								 | 
							
								    >>> a = np.array([[1, -2j], [2j, 5]])
							 | 
						||
| 
								 | 
							
								    >>> LA.eigvalsh(a)
							 | 
						||
| 
								 | 
							
								    array([ 0.17157288,  5.82842712]) # may vary
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    >>> # demonstrate the treatment of the imaginary part of the diagonal
							 | 
						||
| 
								 | 
							
								    >>> a = np.array([[5+2j, 9-2j], [0+2j, 2-1j]])
							 | 
						||
| 
								 | 
							
								    >>> a
							 | 
						||
| 
								 | 
							
								    array([[5.+2.j, 9.-2.j],
							 | 
						||
| 
								 | 
							
								           [0.+2.j, 2.-1.j]])
							 | 
						||
| 
								 | 
							
								    >>> # with UPLO='L' this is numerically equivalent to using LA.eigvals()
							 | 
						||
| 
								 | 
							
								    >>> # with:
							 | 
						||
| 
								 | 
							
								    >>> b = np.array([[5.+0.j, 0.-2.j], [0.+2.j, 2.-0.j]])
							 | 
						||
| 
								 | 
							
								    >>> b
							 | 
						||
| 
								 | 
							
								    array([[5.+0.j, 0.-2.j],
							 | 
						||
| 
								 | 
							
								           [0.+2.j, 2.+0.j]])
							 | 
						||
| 
								 | 
							
								    >>> wa = LA.eigvalsh(a)
							 | 
						||
| 
								 | 
							
								    >>> wb = LA.eigvals(b)
							 | 
						||
| 
								 | 
							
								    >>> wa; wb
							 | 
						||
| 
								 | 
							
								    array([1., 6.])
							 | 
						||
| 
								 | 
							
								    array([6.+0.j, 1.+0.j])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    UPLO = UPLO.upper()
							 | 
						||
| 
								 | 
							
								    if UPLO not in ('L', 'U'):
							 | 
						||
| 
								 | 
							
								        raise ValueError("UPLO argument must be 'L' or 'U'")
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    extobj = get_linalg_error_extobj(
							 | 
						||
| 
								 | 
							
								        _raise_linalgerror_eigenvalues_nonconvergence)
							 | 
						||
| 
								 | 
							
								    if UPLO == 'L':
							 | 
						||
| 
								 | 
							
								        gufunc = _umath_linalg.eigvalsh_lo
							 | 
						||
| 
								 | 
							
								    else:
							 | 
						||
| 
								 | 
							
								        gufunc = _umath_linalg.eigvalsh_up
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    a, wrap = _makearray(a)
							 | 
						||
| 
								 | 
							
								    _assert_stacked_2d(a)
							 | 
						||
| 
								 | 
							
								    _assert_stacked_square(a)
							 | 
						||
| 
								 | 
							
								    t, result_t = _commonType(a)
							 | 
						||
| 
								 | 
							
								    signature = 'D->d' if isComplexType(t) else 'd->d'
							 | 
						||
| 
								 | 
							
								    w = gufunc(a, signature=signature, extobj=extobj)
							 | 
						||
| 
								 | 
							
								    return w.astype(_realType(result_t), copy=False)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def _convertarray(a):
							 | 
						||
| 
								 | 
							
								    t, result_t = _commonType(a)
							 | 
						||
| 
								 | 
							
								    a = a.astype(t).T.copy()
							 | 
						||
| 
								 | 
							
								    return a, t, result_t
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								# Eigenvectors
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								@array_function_dispatch(_unary_dispatcher)
							 | 
						||
| 
								 | 
							
								def eig(a):
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    Compute the eigenvalues and right eigenvectors of a square array.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Parameters
							 | 
						||
| 
								 | 
							
								    ----------
							 | 
						||
| 
								 | 
							
								    a : (..., M, M) array
							 | 
						||
| 
								 | 
							
								        Matrices for which the eigenvalues and right eigenvectors will
							 | 
						||
| 
								 | 
							
								        be computed
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Returns
							 | 
						||
| 
								 | 
							
								    -------
							 | 
						||
| 
								 | 
							
								    w : (..., M) array
							 | 
						||
| 
								 | 
							
								        The eigenvalues, each repeated according to its multiplicity.
							 | 
						||
| 
								 | 
							
								        The eigenvalues are not necessarily ordered. The resulting
							 | 
						||
| 
								 | 
							
								        array will be of complex type, unless the imaginary part is
							 | 
						||
| 
								 | 
							
								        zero in which case it will be cast to a real type. When `a`
							 | 
						||
| 
								 | 
							
								        is real the resulting eigenvalues will be real (0 imaginary
							 | 
						||
| 
								 | 
							
								        part) or occur in conjugate pairs
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    v : (..., M, M) array
							 | 
						||
| 
								 | 
							
								        The normalized (unit "length") eigenvectors, such that the
							 | 
						||
| 
								 | 
							
								        column ``v[:,i]`` is the eigenvector corresponding to the
							 | 
						||
| 
								 | 
							
								        eigenvalue ``w[i]``.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Raises
							 | 
						||
| 
								 | 
							
								    ------
							 | 
						||
| 
								 | 
							
								    LinAlgError
							 | 
						||
| 
								 | 
							
								        If the eigenvalue computation does not converge.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    See Also
							 | 
						||
| 
								 | 
							
								    --------
							 | 
						||
| 
								 | 
							
								    eigvals : eigenvalues of a non-symmetric array.
							 | 
						||
| 
								 | 
							
								    eigh : eigenvalues and eigenvectors of a real symmetric or complex
							 | 
						||
| 
								 | 
							
								           Hermitian (conjugate symmetric) array.
							 | 
						||
| 
								 | 
							
								    eigvalsh : eigenvalues of a real symmetric or complex Hermitian
							 | 
						||
| 
								 | 
							
								               (conjugate symmetric) array.
							 | 
						||
| 
								 | 
							
								    scipy.linalg.eig : Similar function in SciPy that also solves the
							 | 
						||
| 
								 | 
							
								                       generalized eigenvalue problem.
							 | 
						||
| 
								 | 
							
								    scipy.linalg.schur : Best choice for unitary and other non-Hermitian
							 | 
						||
| 
								 | 
							
								                         normal matrices.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Notes
							 | 
						||
| 
								 | 
							
								    -----
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    .. versionadded:: 1.8.0
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Broadcasting rules apply, see the `numpy.linalg` documentation for
							 | 
						||
| 
								 | 
							
								    details.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    This is implemented using the ``_geev`` LAPACK routines which compute
							 | 
						||
| 
								 | 
							
								    the eigenvalues and eigenvectors of general square arrays.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    The number `w` is an eigenvalue of `a` if there exists a vector
							 | 
						||
| 
								 | 
							
								    `v` such that ``a @ v = w * v``. Thus, the arrays `a`, `w`, and
							 | 
						||
| 
								 | 
							
								    `v` satisfy the equations ``a @ v[:,i] = w[i] * v[:,i]``
							 | 
						||
| 
								 | 
							
								    for :math:`i \\in \\{0,...,M-1\\}`.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    The array `v` of eigenvectors may not be of maximum rank, that is, some
							 | 
						||
| 
								 | 
							
								    of the columns may be linearly dependent, although round-off error may
							 | 
						||
| 
								 | 
							
								    obscure that fact. If the eigenvalues are all different, then theoretically
							 | 
						||
| 
								 | 
							
								    the eigenvectors are linearly independent and `a` can be diagonalized by
							 | 
						||
| 
								 | 
							
								    a similarity transformation using `v`, i.e, ``inv(v) @ a @ v`` is diagonal.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    For non-Hermitian normal matrices the SciPy function `scipy.linalg.schur`
							 | 
						||
| 
								 | 
							
								    is preferred because the matrix `v` is guaranteed to be unitary, which is
							 | 
						||
| 
								 | 
							
								    not the case when using `eig`. The Schur factorization produces an
							 | 
						||
| 
								 | 
							
								    upper triangular matrix rather than a diagonal matrix, but for normal
							 | 
						||
| 
								 | 
							
								    matrices only the diagonal of the upper triangular matrix is needed, the
							 | 
						||
| 
								 | 
							
								    rest is roundoff error.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Finally, it is emphasized that `v` consists of the *right* (as in
							 | 
						||
| 
								 | 
							
								    right-hand side) eigenvectors of `a`.  A vector `y` satisfying
							 | 
						||
| 
								 | 
							
								    ``y.T @ a = z * y.T`` for some number `z` is called a *left*
							 | 
						||
| 
								 | 
							
								    eigenvector of `a`, and, in general, the left and right eigenvectors
							 | 
						||
| 
								 | 
							
								    of a matrix are not necessarily the (perhaps conjugate) transposes
							 | 
						||
| 
								 | 
							
								    of each other.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    References
							 | 
						||
| 
								 | 
							
								    ----------
							 | 
						||
| 
								 | 
							
								    G. Strang, *Linear Algebra and Its Applications*, 2nd Ed., Orlando, FL,
							 | 
						||
| 
								 | 
							
								    Academic Press, Inc., 1980, Various pp.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Examples
							 | 
						||
| 
								 | 
							
								    --------
							 | 
						||
| 
								 | 
							
								    >>> from numpy import linalg as LA
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    (Almost) trivial example with real e-values and e-vectors.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    >>> w, v = LA.eig(np.diag((1, 2, 3)))
							 | 
						||
| 
								 | 
							
								    >>> w; v
							 | 
						||
| 
								 | 
							
								    array([1., 2., 3.])
							 | 
						||
| 
								 | 
							
								    array([[1., 0., 0.],
							 | 
						||
| 
								 | 
							
								           [0., 1., 0.],
							 | 
						||
| 
								 | 
							
								           [0., 0., 1.]])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Real matrix possessing complex e-values and e-vectors; note that the
							 | 
						||
| 
								 | 
							
								    e-values are complex conjugates of each other.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    >>> w, v = LA.eig(np.array([[1, -1], [1, 1]]))
							 | 
						||
| 
								 | 
							
								    >>> w; v
							 | 
						||
| 
								 | 
							
								    array([1.+1.j, 1.-1.j])
							 | 
						||
| 
								 | 
							
								    array([[0.70710678+0.j        , 0.70710678-0.j        ],
							 | 
						||
| 
								 | 
							
								           [0.        -0.70710678j, 0.        +0.70710678j]])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Complex-valued matrix with real e-values (but complex-valued e-vectors);
							 | 
						||
| 
								 | 
							
								    note that ``a.conj().T == a``, i.e., `a` is Hermitian.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    >>> a = np.array([[1, 1j], [-1j, 1]])
							 | 
						||
| 
								 | 
							
								    >>> w, v = LA.eig(a)
							 | 
						||
| 
								 | 
							
								    >>> w; v
							 | 
						||
| 
								 | 
							
								    array([2.+0.j, 0.+0.j])
							 | 
						||
| 
								 | 
							
								    array([[ 0.        +0.70710678j,  0.70710678+0.j        ], # may vary
							 | 
						||
| 
								 | 
							
								           [ 0.70710678+0.j        , -0.        +0.70710678j]])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Be careful about round-off error!
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    >>> a = np.array([[1 + 1e-9, 0], [0, 1 - 1e-9]])
							 | 
						||
| 
								 | 
							
								    >>> # Theor. e-values are 1 +/- 1e-9
							 | 
						||
| 
								 | 
							
								    >>> w, v = LA.eig(a)
							 | 
						||
| 
								 | 
							
								    >>> w; v
							 | 
						||
| 
								 | 
							
								    array([1., 1.])
							 | 
						||
| 
								 | 
							
								    array([[1., 0.],
							 | 
						||
| 
								 | 
							
								           [0., 1.]])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    a, wrap = _makearray(a)
							 | 
						||
| 
								 | 
							
								    _assert_stacked_2d(a)
							 | 
						||
| 
								 | 
							
								    _assert_stacked_square(a)
							 | 
						||
| 
								 | 
							
								    _assert_finite(a)
							 | 
						||
| 
								 | 
							
								    t, result_t = _commonType(a)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    extobj = get_linalg_error_extobj(
							 | 
						||
| 
								 | 
							
								        _raise_linalgerror_eigenvalues_nonconvergence)
							 | 
						||
| 
								 | 
							
								    signature = 'D->DD' if isComplexType(t) else 'd->DD'
							 | 
						||
| 
								 | 
							
								    w, vt = _umath_linalg.eig(a, signature=signature, extobj=extobj)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    if not isComplexType(t) and all(w.imag == 0.0):
							 | 
						||
| 
								 | 
							
								        w = w.real
							 | 
						||
| 
								 | 
							
								        vt = vt.real
							 | 
						||
| 
								 | 
							
								        result_t = _realType(result_t)
							 | 
						||
| 
								 | 
							
								    else:
							 | 
						||
| 
								 | 
							
								        result_t = _complexType(result_t)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    vt = vt.astype(result_t, copy=False)
							 | 
						||
| 
								 | 
							
								    return w.astype(result_t, copy=False), wrap(vt)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								@array_function_dispatch(_eigvalsh_dispatcher)
							 | 
						||
| 
								 | 
							
								def eigh(a, UPLO='L'):
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    Return the eigenvalues and eigenvectors of a complex Hermitian
							 | 
						||
| 
								 | 
							
								    (conjugate symmetric) or a real symmetric matrix.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Returns two objects, a 1-D array containing the eigenvalues of `a`, and
							 | 
						||
| 
								 | 
							
								    a 2-D square array or matrix (depending on the input type) of the
							 | 
						||
| 
								 | 
							
								    corresponding eigenvectors (in columns).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Parameters
							 | 
						||
| 
								 | 
							
								    ----------
							 | 
						||
| 
								 | 
							
								    a : (..., M, M) array
							 | 
						||
| 
								 | 
							
								        Hermitian or real symmetric matrices whose eigenvalues and
							 | 
						||
| 
								 | 
							
								        eigenvectors are to be computed.
							 | 
						||
| 
								 | 
							
								    UPLO : {'L', 'U'}, optional
							 | 
						||
| 
								 | 
							
								        Specifies whether the calculation is done with the lower triangular
							 | 
						||
| 
								 | 
							
								        part of `a` ('L', default) or the upper triangular part ('U').
							 | 
						||
| 
								 | 
							
								        Irrespective of this value only the real parts of the diagonal will
							 | 
						||
| 
								 | 
							
								        be considered in the computation to preserve the notion of a Hermitian
							 | 
						||
| 
								 | 
							
								        matrix. It therefore follows that the imaginary part of the diagonal
							 | 
						||
| 
								 | 
							
								        will always be treated as zero.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Returns
							 | 
						||
| 
								 | 
							
								    -------
							 | 
						||
| 
								 | 
							
								    w : (..., M) ndarray
							 | 
						||
| 
								 | 
							
								        The eigenvalues in ascending order, each repeated according to
							 | 
						||
| 
								 | 
							
								        its multiplicity.
							 | 
						||
| 
								 | 
							
								    v : {(..., M, M) ndarray, (..., M, M) matrix}
							 | 
						||
| 
								 | 
							
								        The column ``v[:, i]`` is the normalized eigenvector corresponding
							 | 
						||
| 
								 | 
							
								        to the eigenvalue ``w[i]``.  Will return a matrix object if `a` is
							 | 
						||
| 
								 | 
							
								        a matrix object.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Raises
							 | 
						||
| 
								 | 
							
								    ------
							 | 
						||
| 
								 | 
							
								    LinAlgError
							 | 
						||
| 
								 | 
							
								        If the eigenvalue computation does not converge.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    See Also
							 | 
						||
| 
								 | 
							
								    --------
							 | 
						||
| 
								 | 
							
								    eigvalsh : eigenvalues of real symmetric or complex Hermitian
							 | 
						||
| 
								 | 
							
								               (conjugate symmetric) arrays.
							 | 
						||
| 
								 | 
							
								    eig : eigenvalues and right eigenvectors for non-symmetric arrays.
							 | 
						||
| 
								 | 
							
								    eigvals : eigenvalues of non-symmetric arrays.
							 | 
						||
| 
								 | 
							
								    scipy.linalg.eigh : Similar function in SciPy (but also solves the
							 | 
						||
| 
								 | 
							
								                        generalized eigenvalue problem).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Notes
							 | 
						||
| 
								 | 
							
								    -----
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    .. versionadded:: 1.8.0
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Broadcasting rules apply, see the `numpy.linalg` documentation for
							 | 
						||
| 
								 | 
							
								    details.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    The eigenvalues/eigenvectors are computed using LAPACK routines ``_syevd``,
							 | 
						||
| 
								 | 
							
								    ``_heevd``.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    The eigenvalues of real symmetric or complex Hermitian matrices are
							 | 
						||
| 
								 | 
							
								    always real. [1]_ The array `v` of (column) eigenvectors is unitary
							 | 
						||
| 
								 | 
							
								    and `a`, `w`, and `v` satisfy the equations
							 | 
						||
| 
								 | 
							
								    ``dot(a, v[:, i]) = w[i] * v[:, i]``.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    References
							 | 
						||
| 
								 | 
							
								    ----------
							 | 
						||
| 
								 | 
							
								    .. [1] G. Strang, *Linear Algebra and Its Applications*, 2nd Ed., Orlando,
							 | 
						||
| 
								 | 
							
								           FL, Academic Press, Inc., 1980, pg. 222.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Examples
							 | 
						||
| 
								 | 
							
								    --------
							 | 
						||
| 
								 | 
							
								    >>> from numpy import linalg as LA
							 | 
						||
| 
								 | 
							
								    >>> a = np.array([[1, -2j], [2j, 5]])
							 | 
						||
| 
								 | 
							
								    >>> a
							 | 
						||
| 
								 | 
							
								    array([[ 1.+0.j, -0.-2.j],
							 | 
						||
| 
								 | 
							
								           [ 0.+2.j,  5.+0.j]])
							 | 
						||
| 
								 | 
							
								    >>> w, v = LA.eigh(a)
							 | 
						||
| 
								 | 
							
								    >>> w; v
							 | 
						||
| 
								 | 
							
								    array([0.17157288, 5.82842712])
							 | 
						||
| 
								 | 
							
								    array([[-0.92387953+0.j        , -0.38268343+0.j        ], # may vary
							 | 
						||
| 
								 | 
							
								           [ 0.        +0.38268343j,  0.        -0.92387953j]])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    >>> np.dot(a, v[:, 0]) - w[0] * v[:, 0] # verify 1st e-val/vec pair
							 | 
						||
| 
								 | 
							
								    array([5.55111512e-17+0.0000000e+00j, 0.00000000e+00+1.2490009e-16j])
							 | 
						||
| 
								 | 
							
								    >>> np.dot(a, v[:, 1]) - w[1] * v[:, 1] # verify 2nd e-val/vec pair
							 | 
						||
| 
								 | 
							
								    array([0.+0.j, 0.+0.j])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    >>> A = np.matrix(a) # what happens if input is a matrix object
							 | 
						||
| 
								 | 
							
								    >>> A
							 | 
						||
| 
								 | 
							
								    matrix([[ 1.+0.j, -0.-2.j],
							 | 
						||
| 
								 | 
							
								            [ 0.+2.j,  5.+0.j]])
							 | 
						||
| 
								 | 
							
								    >>> w, v = LA.eigh(A)
							 | 
						||
| 
								 | 
							
								    >>> w; v
							 | 
						||
| 
								 | 
							
								    array([0.17157288, 5.82842712])
							 | 
						||
| 
								 | 
							
								    matrix([[-0.92387953+0.j        , -0.38268343+0.j        ], # may vary
							 | 
						||
| 
								 | 
							
								            [ 0.        +0.38268343j,  0.        -0.92387953j]])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    >>> # demonstrate the treatment of the imaginary part of the diagonal
							 | 
						||
| 
								 | 
							
								    >>> a = np.array([[5+2j, 9-2j], [0+2j, 2-1j]])
							 | 
						||
| 
								 | 
							
								    >>> a
							 | 
						||
| 
								 | 
							
								    array([[5.+2.j, 9.-2.j],
							 | 
						||
| 
								 | 
							
								           [0.+2.j, 2.-1.j]])
							 | 
						||
| 
								 | 
							
								    >>> # with UPLO='L' this is numerically equivalent to using LA.eig() with:
							 | 
						||
| 
								 | 
							
								    >>> b = np.array([[5.+0.j, 0.-2.j], [0.+2.j, 2.-0.j]])
							 | 
						||
| 
								 | 
							
								    >>> b
							 | 
						||
| 
								 | 
							
								    array([[5.+0.j, 0.-2.j],
							 | 
						||
| 
								 | 
							
								           [0.+2.j, 2.+0.j]])
							 | 
						||
| 
								 | 
							
								    >>> wa, va = LA.eigh(a)
							 | 
						||
| 
								 | 
							
								    >>> wb, vb = LA.eig(b)
							 | 
						||
| 
								 | 
							
								    >>> wa; wb
							 | 
						||
| 
								 | 
							
								    array([1., 6.])
							 | 
						||
| 
								 | 
							
								    array([6.+0.j, 1.+0.j])
							 | 
						||
| 
								 | 
							
								    >>> va; vb
							 | 
						||
| 
								 | 
							
								    array([[-0.4472136 +0.j        , -0.89442719+0.j        ], # may vary
							 | 
						||
| 
								 | 
							
								           [ 0.        +0.89442719j,  0.        -0.4472136j ]])
							 | 
						||
| 
								 | 
							
								    array([[ 0.89442719+0.j       , -0.        +0.4472136j],
							 | 
						||
| 
								 | 
							
								           [-0.        +0.4472136j,  0.89442719+0.j       ]])
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    UPLO = UPLO.upper()
							 | 
						||
| 
								 | 
							
								    if UPLO not in ('L', 'U'):
							 | 
						||
| 
								 | 
							
								        raise ValueError("UPLO argument must be 'L' or 'U'")
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    a, wrap = _makearray(a)
							 | 
						||
| 
								 | 
							
								    _assert_stacked_2d(a)
							 | 
						||
| 
								 | 
							
								    _assert_stacked_square(a)
							 | 
						||
| 
								 | 
							
								    t, result_t = _commonType(a)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    extobj = get_linalg_error_extobj(
							 | 
						||
| 
								 | 
							
								        _raise_linalgerror_eigenvalues_nonconvergence)
							 | 
						||
| 
								 | 
							
								    if UPLO == 'L':
							 | 
						||
| 
								 | 
							
								        gufunc = _umath_linalg.eigh_lo
							 | 
						||
| 
								 | 
							
								    else:
							 | 
						||
| 
								 | 
							
								        gufunc = _umath_linalg.eigh_up
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    signature = 'D->dD' if isComplexType(t) else 'd->dd'
							 | 
						||
| 
								 | 
							
								    w, vt = gufunc(a, signature=signature, extobj=extobj)
							 | 
						||
| 
								 | 
							
								    w = w.astype(_realType(result_t), copy=False)
							 | 
						||
| 
								 | 
							
								    vt = vt.astype(result_t, copy=False)
							 | 
						||
| 
								 | 
							
								    return w, wrap(vt)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								# Singular value decomposition
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def _svd_dispatcher(a, full_matrices=None, compute_uv=None, hermitian=None):
							 | 
						||
| 
								 | 
							
								    return (a,)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								@array_function_dispatch(_svd_dispatcher)
							 | 
						||
| 
								 | 
							
								def svd(a, full_matrices=True, compute_uv=True, hermitian=False):
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    Singular Value Decomposition.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    When `a` is a 2D array, and ``full_matrices=False``, then it is
							 | 
						||
| 
								 | 
							
								    factorized as ``u @ np.diag(s) @ vh = (u * s) @ vh``, where
							 | 
						||
| 
								 | 
							
								    `u` and the Hermitian transpose of `vh` are 2D arrays with
							 | 
						||
| 
								 | 
							
								    orthonormal columns and `s` is a 1D array of `a`'s singular
							 | 
						||
| 
								 | 
							
								    values. When `a` is higher-dimensional, SVD is applied in
							 | 
						||
| 
								 | 
							
								    stacked mode as explained below.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Parameters
							 | 
						||
| 
								 | 
							
								    ----------
							 | 
						||
| 
								 | 
							
								    a : (..., M, N) array_like
							 | 
						||
| 
								 | 
							
								        A real or complex array with ``a.ndim >= 2``.
							 | 
						||
| 
								 | 
							
								    full_matrices : bool, optional
							 | 
						||
| 
								 | 
							
								        If True (default), `u` and `vh` have the shapes ``(..., M, M)`` and
							 | 
						||
| 
								 | 
							
								        ``(..., N, N)``, respectively.  Otherwise, the shapes are
							 | 
						||
| 
								 | 
							
								        ``(..., M, K)`` and ``(..., K, N)``, respectively, where
							 | 
						||
| 
								 | 
							
								        ``K = min(M, N)``.
							 | 
						||
| 
								 | 
							
								    compute_uv : bool, optional
							 | 
						||
| 
								 | 
							
								        Whether or not to compute `u` and `vh` in addition to `s`.  True
							 | 
						||
| 
								 | 
							
								        by default.
							 | 
						||
| 
								 | 
							
								    hermitian : bool, optional
							 | 
						||
| 
								 | 
							
								        If True, `a` is assumed to be Hermitian (symmetric if real-valued),
							 | 
						||
| 
								 | 
							
								        enabling a more efficient method for finding singular values.
							 | 
						||
| 
								 | 
							
								        Defaults to False.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        .. versionadded:: 1.17.0
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Returns
							 | 
						||
| 
								 | 
							
								    -------
							 | 
						||
| 
								 | 
							
								    u : { (..., M, M), (..., M, K) } array
							 | 
						||
| 
								 | 
							
								        Unitary array(s). The first ``a.ndim - 2`` dimensions have the same
							 | 
						||
| 
								 | 
							
								        size as those of the input `a`. The size of the last two dimensions
							 | 
						||
| 
								 | 
							
								        depends on the value of `full_matrices`. Only returned when
							 | 
						||
| 
								 | 
							
								        `compute_uv` is True.
							 | 
						||
| 
								 | 
							
								    s : (..., K) array
							 | 
						||
| 
								 | 
							
								        Vector(s) with the singular values, within each vector sorted in
							 | 
						||
| 
								 | 
							
								        descending order. The first ``a.ndim - 2`` dimensions have the same
							 | 
						||
| 
								 | 
							
								        size as those of the input `a`.
							 | 
						||
| 
								 | 
							
								    vh : { (..., N, N), (..., K, N) } array
							 | 
						||
| 
								 | 
							
								        Unitary array(s). The first ``a.ndim - 2`` dimensions have the same
							 | 
						||
| 
								 | 
							
								        size as those of the input `a`. The size of the last two dimensions
							 | 
						||
| 
								 | 
							
								        depends on the value of `full_matrices`. Only returned when
							 | 
						||
| 
								 | 
							
								        `compute_uv` is True.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Raises
							 | 
						||
| 
								 | 
							
								    ------
							 | 
						||
| 
								 | 
							
								    LinAlgError
							 | 
						||
| 
								 | 
							
								        If SVD computation does not converge.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    See Also
							 | 
						||
| 
								 | 
							
								    --------
							 | 
						||
| 
								 | 
							
								    scipy.linalg.svd : Similar function in SciPy.
							 | 
						||
| 
								 | 
							
								    scipy.linalg.svdvals : Compute singular values of a matrix.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Notes
							 | 
						||
| 
								 | 
							
								    -----
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    .. versionchanged:: 1.8.0
							 | 
						||
| 
								 | 
							
								       Broadcasting rules apply, see the `numpy.linalg` documentation for
							 | 
						||
| 
								 | 
							
								       details.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    The decomposition is performed using LAPACK routine ``_gesdd``.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    SVD is usually described for the factorization of a 2D matrix :math:`A`.
							 | 
						||
| 
								 | 
							
								    The higher-dimensional case will be discussed below. In the 2D case, SVD is
							 | 
						||
| 
								 | 
							
								    written as :math:`A = U S V^H`, where :math:`A = a`, :math:`U= u`,
							 | 
						||
| 
								 | 
							
								    :math:`S= \\mathtt{np.diag}(s)` and :math:`V^H = vh`. The 1D array `s`
							 | 
						||
| 
								 | 
							
								    contains the singular values of `a` and `u` and `vh` are unitary. The rows
							 | 
						||
| 
								 | 
							
								    of `vh` are the eigenvectors of :math:`A^H A` and the columns of `u` are
							 | 
						||
| 
								 | 
							
								    the eigenvectors of :math:`A A^H`. In both cases the corresponding
							 | 
						||
| 
								 | 
							
								    (possibly non-zero) eigenvalues are given by ``s**2``.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    If `a` has more than two dimensions, then broadcasting rules apply, as
							 | 
						||
| 
								 | 
							
								    explained in :ref:`routines.linalg-broadcasting`. This means that SVD is
							 | 
						||
| 
								 | 
							
								    working in "stacked" mode: it iterates over all indices of the first
							 | 
						||
| 
								 | 
							
								    ``a.ndim - 2`` dimensions and for each combination SVD is applied to the
							 | 
						||
| 
								 | 
							
								    last two indices. The matrix `a` can be reconstructed from the
							 | 
						||
| 
								 | 
							
								    decomposition with either ``(u * s[..., None, :]) @ vh`` or
							 | 
						||
| 
								 | 
							
								    ``u @ (s[..., None] * vh)``. (The ``@`` operator can be replaced by the
							 | 
						||
| 
								 | 
							
								    function ``np.matmul`` for python versions below 3.5.)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    If `a` is a ``matrix`` object (as opposed to an ``ndarray``), then so are
							 | 
						||
| 
								 | 
							
								    all the return values.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Examples
							 | 
						||
| 
								 | 
							
								    --------
							 | 
						||
| 
								 | 
							
								    >>> a = np.random.randn(9, 6) + 1j*np.random.randn(9, 6)
							 | 
						||
| 
								 | 
							
								    >>> b = np.random.randn(2, 7, 8, 3) + 1j*np.random.randn(2, 7, 8, 3)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Reconstruction based on full SVD, 2D case:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    >>> u, s, vh = np.linalg.svd(a, full_matrices=True)
							 | 
						||
| 
								 | 
							
								    >>> u.shape, s.shape, vh.shape
							 | 
						||
| 
								 | 
							
								    ((9, 9), (6,), (6, 6))
							 | 
						||
| 
								 | 
							
								    >>> np.allclose(a, np.dot(u[:, :6] * s, vh))
							 | 
						||
| 
								 | 
							
								    True
							 | 
						||
| 
								 | 
							
								    >>> smat = np.zeros((9, 6), dtype=complex)
							 | 
						||
| 
								 | 
							
								    >>> smat[:6, :6] = np.diag(s)
							 | 
						||
| 
								 | 
							
								    >>> np.allclose(a, np.dot(u, np.dot(smat, vh)))
							 | 
						||
| 
								 | 
							
								    True
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Reconstruction based on reduced SVD, 2D case:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    >>> u, s, vh = np.linalg.svd(a, full_matrices=False)
							 | 
						||
| 
								 | 
							
								    >>> u.shape, s.shape, vh.shape
							 | 
						||
| 
								 | 
							
								    ((9, 6), (6,), (6, 6))
							 | 
						||
| 
								 | 
							
								    >>> np.allclose(a, np.dot(u * s, vh))
							 | 
						||
| 
								 | 
							
								    True
							 | 
						||
| 
								 | 
							
								    >>> smat = np.diag(s)
							 | 
						||
| 
								 | 
							
								    >>> np.allclose(a, np.dot(u, np.dot(smat, vh)))
							 | 
						||
| 
								 | 
							
								    True
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Reconstruction based on full SVD, 4D case:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    >>> u, s, vh = np.linalg.svd(b, full_matrices=True)
							 | 
						||
| 
								 | 
							
								    >>> u.shape, s.shape, vh.shape
							 | 
						||
| 
								 | 
							
								    ((2, 7, 8, 8), (2, 7, 3), (2, 7, 3, 3))
							 | 
						||
| 
								 | 
							
								    >>> np.allclose(b, np.matmul(u[..., :3] * s[..., None, :], vh))
							 | 
						||
| 
								 | 
							
								    True
							 | 
						||
| 
								 | 
							
								    >>> np.allclose(b, np.matmul(u[..., :3], s[..., None] * vh))
							 | 
						||
| 
								 | 
							
								    True
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Reconstruction based on reduced SVD, 4D case:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    >>> u, s, vh = np.linalg.svd(b, full_matrices=False)
							 | 
						||
| 
								 | 
							
								    >>> u.shape, s.shape, vh.shape
							 | 
						||
| 
								 | 
							
								    ((2, 7, 8, 3), (2, 7, 3), (2, 7, 3, 3))
							 | 
						||
| 
								 | 
							
								    >>> np.allclose(b, np.matmul(u * s[..., None, :], vh))
							 | 
						||
| 
								 | 
							
								    True
							 | 
						||
| 
								 | 
							
								    >>> np.allclose(b, np.matmul(u, s[..., None] * vh))
							 | 
						||
| 
								 | 
							
								    True
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    import numpy as _nx
							 | 
						||
| 
								 | 
							
								    a, wrap = _makearray(a)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    if hermitian:
							 | 
						||
| 
								 | 
							
								        # note: lapack svd returns eigenvalues with s ** 2 sorted descending,
							 | 
						||
| 
								 | 
							
								        # but eig returns s sorted ascending, so we re-order the eigenvalues
							 | 
						||
| 
								 | 
							
								        # and related arrays to have the correct order
							 | 
						||
| 
								 | 
							
								        if compute_uv:
							 | 
						||
| 
								 | 
							
								            s, u = eigh(a)
							 | 
						||
| 
								 | 
							
								            sgn = sign(s)
							 | 
						||
| 
								 | 
							
								            s = abs(s)
							 | 
						||
| 
								 | 
							
								            sidx = argsort(s)[..., ::-1]
							 | 
						||
| 
								 | 
							
								            sgn = _nx.take_along_axis(sgn, sidx, axis=-1)
							 | 
						||
| 
								 | 
							
								            s = _nx.take_along_axis(s, sidx, axis=-1)
							 | 
						||
| 
								 | 
							
								            u = _nx.take_along_axis(u, sidx[..., None, :], axis=-1)
							 | 
						||
| 
								 | 
							
								            # singular values are unsigned, move the sign into v
							 | 
						||
| 
								 | 
							
								            vt = transpose(u * sgn[..., None, :]).conjugate()
							 | 
						||
| 
								 | 
							
								            return wrap(u), s, wrap(vt)
							 | 
						||
| 
								 | 
							
								        else:
							 | 
						||
| 
								 | 
							
								            s = eigvalsh(a)
							 | 
						||
| 
								 | 
							
								            s = abs(s)
							 | 
						||
| 
								 | 
							
								            return sort(s)[..., ::-1]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    _assert_stacked_2d(a)
							 | 
						||
| 
								 | 
							
								    t, result_t = _commonType(a)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    extobj = get_linalg_error_extobj(_raise_linalgerror_svd_nonconvergence)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    m, n = a.shape[-2:]
							 | 
						||
| 
								 | 
							
								    if compute_uv:
							 | 
						||
| 
								 | 
							
								        if full_matrices:
							 | 
						||
| 
								 | 
							
								            if m < n:
							 | 
						||
| 
								 | 
							
								                gufunc = _umath_linalg.svd_m_f
							 | 
						||
| 
								 | 
							
								            else:
							 | 
						||
| 
								 | 
							
								                gufunc = _umath_linalg.svd_n_f
							 | 
						||
| 
								 | 
							
								        else:
							 | 
						||
| 
								 | 
							
								            if m < n:
							 | 
						||
| 
								 | 
							
								                gufunc = _umath_linalg.svd_m_s
							 | 
						||
| 
								 | 
							
								            else:
							 | 
						||
| 
								 | 
							
								                gufunc = _umath_linalg.svd_n_s
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        signature = 'D->DdD' if isComplexType(t) else 'd->ddd'
							 | 
						||
| 
								 | 
							
								        u, s, vh = gufunc(a, signature=signature, extobj=extobj)
							 | 
						||
| 
								 | 
							
								        u = u.astype(result_t, copy=False)
							 | 
						||
| 
								 | 
							
								        s = s.astype(_realType(result_t), copy=False)
							 | 
						||
| 
								 | 
							
								        vh = vh.astype(result_t, copy=False)
							 | 
						||
| 
								 | 
							
								        return wrap(u), s, wrap(vh)
							 | 
						||
| 
								 | 
							
								    else:
							 | 
						||
| 
								 | 
							
								        if m < n:
							 | 
						||
| 
								 | 
							
								            gufunc = _umath_linalg.svd_m
							 | 
						||
| 
								 | 
							
								        else:
							 | 
						||
| 
								 | 
							
								            gufunc = _umath_linalg.svd_n
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        signature = 'D->d' if isComplexType(t) else 'd->d'
							 | 
						||
| 
								 | 
							
								        s = gufunc(a, signature=signature, extobj=extobj)
							 | 
						||
| 
								 | 
							
								        s = s.astype(_realType(result_t), copy=False)
							 | 
						||
| 
								 | 
							
								        return s
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def _cond_dispatcher(x, p=None):
							 | 
						||
| 
								 | 
							
								    return (x,)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								@array_function_dispatch(_cond_dispatcher)
							 | 
						||
| 
								 | 
							
								def cond(x, p=None):
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    Compute the condition number of a matrix.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    This function is capable of returning the condition number using
							 | 
						||
| 
								 | 
							
								    one of seven different norms, depending on the value of `p` (see
							 | 
						||
| 
								 | 
							
								    Parameters below).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Parameters
							 | 
						||
| 
								 | 
							
								    ----------
							 | 
						||
| 
								 | 
							
								    x : (..., M, N) array_like
							 | 
						||
| 
								 | 
							
								        The matrix whose condition number is sought.
							 | 
						||
| 
								 | 
							
								    p : {None, 1, -1, 2, -2, inf, -inf, 'fro'}, optional
							 | 
						||
| 
								 | 
							
								        Order of the norm used in the condition number computation:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        =====  ============================
							 | 
						||
| 
								 | 
							
								        p      norm for matrices
							 | 
						||
| 
								 | 
							
								        =====  ============================
							 | 
						||
| 
								 | 
							
								        None   2-norm, computed directly using the ``SVD``
							 | 
						||
| 
								 | 
							
								        'fro'  Frobenius norm
							 | 
						||
| 
								 | 
							
								        inf    max(sum(abs(x), axis=1))
							 | 
						||
| 
								 | 
							
								        -inf   min(sum(abs(x), axis=1))
							 | 
						||
| 
								 | 
							
								        1      max(sum(abs(x), axis=0))
							 | 
						||
| 
								 | 
							
								        -1     min(sum(abs(x), axis=0))
							 | 
						||
| 
								 | 
							
								        2      2-norm (largest sing. value)
							 | 
						||
| 
								 | 
							
								        -2     smallest singular value
							 | 
						||
| 
								 | 
							
								        =====  ============================
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        inf means the `numpy.inf` object, and the Frobenius norm is
							 | 
						||
| 
								 | 
							
								        the root-of-sum-of-squares norm.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Returns
							 | 
						||
| 
								 | 
							
								    -------
							 | 
						||
| 
								 | 
							
								    c : {float, inf}
							 | 
						||
| 
								 | 
							
								        The condition number of the matrix. May be infinite.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    See Also
							 | 
						||
| 
								 | 
							
								    --------
							 | 
						||
| 
								 | 
							
								    numpy.linalg.norm
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Notes
							 | 
						||
| 
								 | 
							
								    -----
							 | 
						||
| 
								 | 
							
								    The condition number of `x` is defined as the norm of `x` times the
							 | 
						||
| 
								 | 
							
								    norm of the inverse of `x` [1]_; the norm can be the usual L2-norm
							 | 
						||
| 
								 | 
							
								    (root-of-sum-of-squares) or one of a number of other matrix norms.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    References
							 | 
						||
| 
								 | 
							
								    ----------
							 | 
						||
| 
								 | 
							
								    .. [1] G. Strang, *Linear Algebra and Its Applications*, Orlando, FL,
							 | 
						||
| 
								 | 
							
								           Academic Press, Inc., 1980, pg. 285.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Examples
							 | 
						||
| 
								 | 
							
								    --------
							 | 
						||
| 
								 | 
							
								    >>> from numpy import linalg as LA
							 | 
						||
| 
								 | 
							
								    >>> a = np.array([[1, 0, -1], [0, 1, 0], [1, 0, 1]])
							 | 
						||
| 
								 | 
							
								    >>> a
							 | 
						||
| 
								 | 
							
								    array([[ 1,  0, -1],
							 | 
						||
| 
								 | 
							
								           [ 0,  1,  0],
							 | 
						||
| 
								 | 
							
								           [ 1,  0,  1]])
							 | 
						||
| 
								 | 
							
								    >>> LA.cond(a)
							 | 
						||
| 
								 | 
							
								    1.4142135623730951
							 | 
						||
| 
								 | 
							
								    >>> LA.cond(a, 'fro')
							 | 
						||
| 
								 | 
							
								    3.1622776601683795
							 | 
						||
| 
								 | 
							
								    >>> LA.cond(a, np.inf)
							 | 
						||
| 
								 | 
							
								    2.0
							 | 
						||
| 
								 | 
							
								    >>> LA.cond(a, -np.inf)
							 | 
						||
| 
								 | 
							
								    1.0
							 | 
						||
| 
								 | 
							
								    >>> LA.cond(a, 1)
							 | 
						||
| 
								 | 
							
								    2.0
							 | 
						||
| 
								 | 
							
								    >>> LA.cond(a, -1)
							 | 
						||
| 
								 | 
							
								    1.0
							 | 
						||
| 
								 | 
							
								    >>> LA.cond(a, 2)
							 | 
						||
| 
								 | 
							
								    1.4142135623730951
							 | 
						||
| 
								 | 
							
								    >>> LA.cond(a, -2)
							 | 
						||
| 
								 | 
							
								    0.70710678118654746 # may vary
							 | 
						||
| 
								 | 
							
								    >>> min(LA.svd(a, compute_uv=False))*min(LA.svd(LA.inv(a), compute_uv=False))
							 | 
						||
| 
								 | 
							
								    0.70710678118654746 # may vary
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    x = asarray(x)  # in case we have a matrix
							 | 
						||
| 
								 | 
							
								    if _is_empty_2d(x):
							 | 
						||
| 
								 | 
							
								        raise LinAlgError("cond is not defined on empty arrays")
							 | 
						||
| 
								 | 
							
								    if p is None or p == 2 or p == -2:
							 | 
						||
| 
								 | 
							
								        s = svd(x, compute_uv=False)
							 | 
						||
| 
								 | 
							
								        with errstate(all='ignore'):
							 | 
						||
| 
								 | 
							
								            if p == -2:
							 | 
						||
| 
								 | 
							
								                r = s[..., -1] / s[..., 0]
							 | 
						||
| 
								 | 
							
								            else:
							 | 
						||
| 
								 | 
							
								                r = s[..., 0] / s[..., -1]
							 | 
						||
| 
								 | 
							
								    else:
							 | 
						||
| 
								 | 
							
								        # Call inv(x) ignoring errors. The result array will
							 | 
						||
| 
								 | 
							
								        # contain nans in the entries where inversion failed.
							 | 
						||
| 
								 | 
							
								        _assert_stacked_2d(x)
							 | 
						||
| 
								 | 
							
								        _assert_stacked_square(x)
							 | 
						||
| 
								 | 
							
								        t, result_t = _commonType(x)
							 | 
						||
| 
								 | 
							
								        signature = 'D->D' if isComplexType(t) else 'd->d'
							 | 
						||
| 
								 | 
							
								        with errstate(all='ignore'):
							 | 
						||
| 
								 | 
							
								            invx = _umath_linalg.inv(x, signature=signature)
							 | 
						||
| 
								 | 
							
								            r = norm(x, p, axis=(-2, -1)) * norm(invx, p, axis=(-2, -1))
							 | 
						||
| 
								 | 
							
								        r = r.astype(result_t, copy=False)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    # Convert nans to infs unless the original array had nan entries
							 | 
						||
| 
								 | 
							
								    r = asarray(r)
							 | 
						||
| 
								 | 
							
								    nan_mask = isnan(r)
							 | 
						||
| 
								 | 
							
								    if nan_mask.any():
							 | 
						||
| 
								 | 
							
								        nan_mask &= ~isnan(x).any(axis=(-2, -1))
							 | 
						||
| 
								 | 
							
								        if r.ndim > 0:
							 | 
						||
| 
								 | 
							
								            r[nan_mask] = Inf
							 | 
						||
| 
								 | 
							
								        elif nan_mask:
							 | 
						||
| 
								 | 
							
								            r[()] = Inf
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    # Convention is to return scalars instead of 0d arrays
							 | 
						||
| 
								 | 
							
								    if r.ndim == 0:
							 | 
						||
| 
								 | 
							
								        r = r[()]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    return r
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def _matrix_rank_dispatcher(A, tol=None, hermitian=None):
							 | 
						||
| 
								 | 
							
								    return (A,)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								@array_function_dispatch(_matrix_rank_dispatcher)
							 | 
						||
| 
								 | 
							
								def matrix_rank(A, tol=None, hermitian=False):
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    Return matrix rank of array using SVD method
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Rank of the array is the number of singular values of the array that are
							 | 
						||
| 
								 | 
							
								    greater than `tol`.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    .. versionchanged:: 1.14
							 | 
						||
| 
								 | 
							
								       Can now operate on stacks of matrices
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Parameters
							 | 
						||
| 
								 | 
							
								    ----------
							 | 
						||
| 
								 | 
							
								    A : {(M,), (..., M, N)} array_like
							 | 
						||
| 
								 | 
							
								        Input vector or stack of matrices.
							 | 
						||
| 
								 | 
							
								    tol : (...) array_like, float, optional
							 | 
						||
| 
								 | 
							
								        Threshold below which SVD values are considered zero. If `tol` is
							 | 
						||
| 
								 | 
							
								        None, and ``S`` is an array with singular values for `M`, and
							 | 
						||
| 
								 | 
							
								        ``eps`` is the epsilon value for datatype of ``S``, then `tol` is
							 | 
						||
| 
								 | 
							
								        set to ``S.max() * max(M, N) * eps``.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        .. versionchanged:: 1.14
							 | 
						||
| 
								 | 
							
								           Broadcasted against the stack of matrices
							 | 
						||
| 
								 | 
							
								    hermitian : bool, optional
							 | 
						||
| 
								 | 
							
								        If True, `A` is assumed to be Hermitian (symmetric if real-valued),
							 | 
						||
| 
								 | 
							
								        enabling a more efficient method for finding singular values.
							 | 
						||
| 
								 | 
							
								        Defaults to False.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        .. versionadded:: 1.14
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Returns
							 | 
						||
| 
								 | 
							
								    -------
							 | 
						||
| 
								 | 
							
								    rank : (...) array_like
							 | 
						||
| 
								 | 
							
								        Rank of A.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Notes
							 | 
						||
| 
								 | 
							
								    -----
							 | 
						||
| 
								 | 
							
								    The default threshold to detect rank deficiency is a test on the magnitude
							 | 
						||
| 
								 | 
							
								    of the singular values of `A`.  By default, we identify singular values less
							 | 
						||
| 
								 | 
							
								    than ``S.max() * max(M, N) * eps`` as indicating rank deficiency (with
							 | 
						||
| 
								 | 
							
								    the symbols defined above). This is the algorithm MATLAB uses [1].  It also
							 | 
						||
| 
								 | 
							
								    appears in *Numerical recipes* in the discussion of SVD solutions for linear
							 | 
						||
| 
								 | 
							
								    least squares [2].
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    This default threshold is designed to detect rank deficiency accounting for
							 | 
						||
| 
								 | 
							
								    the numerical errors of the SVD computation.  Imagine that there is a column
							 | 
						||
| 
								 | 
							
								    in `A` that is an exact (in floating point) linear combination of other
							 | 
						||
| 
								 | 
							
								    columns in `A`. Computing the SVD on `A` will not produce a singular value
							 | 
						||
| 
								 | 
							
								    exactly equal to 0 in general: any difference of the smallest SVD value from
							 | 
						||
| 
								 | 
							
								    0 will be caused by numerical imprecision in the calculation of the SVD.
							 | 
						||
| 
								 | 
							
								    Our threshold for small SVD values takes this numerical imprecision into
							 | 
						||
| 
								 | 
							
								    account, and the default threshold will detect such numerical rank
							 | 
						||
| 
								 | 
							
								    deficiency.  The threshold may declare a matrix `A` rank deficient even if
							 | 
						||
| 
								 | 
							
								    the linear combination of some columns of `A` is not exactly equal to
							 | 
						||
| 
								 | 
							
								    another column of `A` but only numerically very close to another column of
							 | 
						||
| 
								 | 
							
								    `A`.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    We chose our default threshold because it is in wide use.  Other thresholds
							 | 
						||
| 
								 | 
							
								    are possible.  For example, elsewhere in the 2007 edition of *Numerical
							 | 
						||
| 
								 | 
							
								    recipes* there is an alternative threshold of ``S.max() *
							 | 
						||
| 
								 | 
							
								    np.finfo(A.dtype).eps / 2. * np.sqrt(m + n + 1.)``. The authors describe
							 | 
						||
| 
								 | 
							
								    this threshold as being based on "expected roundoff error" (p 71).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    The thresholds above deal with floating point roundoff error in the
							 | 
						||
| 
								 | 
							
								    calculation of the SVD.  However, you may have more information about the
							 | 
						||
| 
								 | 
							
								    sources of error in `A` that would make you consider other tolerance values
							 | 
						||
| 
								 | 
							
								    to detect *effective* rank deficiency.  The most useful measure of the
							 | 
						||
| 
								 | 
							
								    tolerance depends on the operations you intend to use on your matrix.  For
							 | 
						||
| 
								 | 
							
								    example, if your data come from uncertain measurements with uncertainties
							 | 
						||
| 
								 | 
							
								    greater than floating point epsilon, choosing a tolerance near that
							 | 
						||
| 
								 | 
							
								    uncertainty may be preferable.  The tolerance may be absolute if the
							 | 
						||
| 
								 | 
							
								    uncertainties are absolute rather than relative.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    References
							 | 
						||
| 
								 | 
							
								    ----------
							 | 
						||
| 
								 | 
							
								    .. [1] MATLAB reference documentation, "Rank"
							 | 
						||
| 
								 | 
							
								           https://www.mathworks.com/help/techdoc/ref/rank.html
							 | 
						||
| 
								 | 
							
								    .. [2] W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery,
							 | 
						||
| 
								 | 
							
								           "Numerical Recipes (3rd edition)", Cambridge University Press, 2007,
							 | 
						||
| 
								 | 
							
								           page 795.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Examples
							 | 
						||
| 
								 | 
							
								    --------
							 | 
						||
| 
								 | 
							
								    >>> from numpy.linalg import matrix_rank
							 | 
						||
| 
								 | 
							
								    >>> matrix_rank(np.eye(4)) # Full rank matrix
							 | 
						||
| 
								 | 
							
								    4
							 | 
						||
| 
								 | 
							
								    >>> I=np.eye(4); I[-1,-1] = 0. # rank deficient matrix
							 | 
						||
| 
								 | 
							
								    >>> matrix_rank(I)
							 | 
						||
| 
								 | 
							
								    3
							 | 
						||
| 
								 | 
							
								    >>> matrix_rank(np.ones((4,))) # 1 dimension - rank 1 unless all 0
							 | 
						||
| 
								 | 
							
								    1
							 | 
						||
| 
								 | 
							
								    >>> matrix_rank(np.zeros((4,)))
							 | 
						||
| 
								 | 
							
								    0
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    A = asarray(A)
							 | 
						||
| 
								 | 
							
								    if A.ndim < 2:
							 | 
						||
| 
								 | 
							
								        return int(not all(A==0))
							 | 
						||
| 
								 | 
							
								    S = svd(A, compute_uv=False, hermitian=hermitian)
							 | 
						||
| 
								 | 
							
								    if tol is None:
							 | 
						||
| 
								 | 
							
								        tol = S.max(axis=-1, keepdims=True) * max(A.shape[-2:]) * finfo(S.dtype).eps
							 | 
						||
| 
								 | 
							
								    else:
							 | 
						||
| 
								 | 
							
								        tol = asarray(tol)[..., newaxis]
							 | 
						||
| 
								 | 
							
								    return count_nonzero(S > tol, axis=-1)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								# Generalized inverse
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def _pinv_dispatcher(a, rcond=None, hermitian=None):
							 | 
						||
| 
								 | 
							
								    return (a,)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								@array_function_dispatch(_pinv_dispatcher)
							 | 
						||
| 
								 | 
							
								def pinv(a, rcond=1e-15, hermitian=False):
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    Compute the (Moore-Penrose) pseudo-inverse of a matrix.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Calculate the generalized inverse of a matrix using its
							 | 
						||
| 
								 | 
							
								    singular-value decomposition (SVD) and including all
							 | 
						||
| 
								 | 
							
								    *large* singular values.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    .. versionchanged:: 1.14
							 | 
						||
| 
								 | 
							
								       Can now operate on stacks of matrices
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Parameters
							 | 
						||
| 
								 | 
							
								    ----------
							 | 
						||
| 
								 | 
							
								    a : (..., M, N) array_like
							 | 
						||
| 
								 | 
							
								        Matrix or stack of matrices to be pseudo-inverted.
							 | 
						||
| 
								 | 
							
								    rcond : (...) array_like of float
							 | 
						||
| 
								 | 
							
								        Cutoff for small singular values.
							 | 
						||
| 
								 | 
							
								        Singular values less than or equal to
							 | 
						||
| 
								 | 
							
								        ``rcond * largest_singular_value`` are set to zero.
							 | 
						||
| 
								 | 
							
								        Broadcasts against the stack of matrices.
							 | 
						||
| 
								 | 
							
								    hermitian : bool, optional
							 | 
						||
| 
								 | 
							
								        If True, `a` is assumed to be Hermitian (symmetric if real-valued),
							 | 
						||
| 
								 | 
							
								        enabling a more efficient method for finding singular values.
							 | 
						||
| 
								 | 
							
								        Defaults to False.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        .. versionadded:: 1.17.0
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Returns
							 | 
						||
| 
								 | 
							
								    -------
							 | 
						||
| 
								 | 
							
								    B : (..., N, M) ndarray
							 | 
						||
| 
								 | 
							
								        The pseudo-inverse of `a`. If `a` is a `matrix` instance, then so
							 | 
						||
| 
								 | 
							
								        is `B`.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Raises
							 | 
						||
| 
								 | 
							
								    ------
							 | 
						||
| 
								 | 
							
								    LinAlgError
							 | 
						||
| 
								 | 
							
								        If the SVD computation does not converge.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    See Also
							 | 
						||
| 
								 | 
							
								    --------
							 | 
						||
| 
								 | 
							
								    scipy.linalg.pinv : Similar function in SciPy.
							 | 
						||
| 
								 | 
							
								    scipy.linalg.pinvh : Compute the (Moore-Penrose) pseudo-inverse of a
							 | 
						||
| 
								 | 
							
								                         Hermitian matrix.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Notes
							 | 
						||
| 
								 | 
							
								    -----
							 | 
						||
| 
								 | 
							
								    The pseudo-inverse of a matrix A, denoted :math:`A^+`, is
							 | 
						||
| 
								 | 
							
								    defined as: "the matrix that 'solves' [the least-squares problem]
							 | 
						||
| 
								 | 
							
								    :math:`Ax = b`," i.e., if :math:`\\bar{x}` is said solution, then
							 | 
						||
| 
								 | 
							
								    :math:`A^+` is that matrix such that :math:`\\bar{x} = A^+b`.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    It can be shown that if :math:`Q_1 \\Sigma Q_2^T = A` is the singular
							 | 
						||
| 
								 | 
							
								    value decomposition of A, then
							 | 
						||
| 
								 | 
							
								    :math:`A^+ = Q_2 \\Sigma^+ Q_1^T`, where :math:`Q_{1,2}` are
							 | 
						||
| 
								 | 
							
								    orthogonal matrices, :math:`\\Sigma` is a diagonal matrix consisting
							 | 
						||
| 
								 | 
							
								    of A's so-called singular values, (followed, typically, by
							 | 
						||
| 
								 | 
							
								    zeros), and then :math:`\\Sigma^+` is simply the diagonal matrix
							 | 
						||
| 
								 | 
							
								    consisting of the reciprocals of A's singular values
							 | 
						||
| 
								 | 
							
								    (again, followed by zeros). [1]_
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    References
							 | 
						||
| 
								 | 
							
								    ----------
							 | 
						||
| 
								 | 
							
								    .. [1] G. Strang, *Linear Algebra and Its Applications*, 2nd Ed., Orlando,
							 | 
						||
| 
								 | 
							
								           FL, Academic Press, Inc., 1980, pp. 139-142.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Examples
							 | 
						||
| 
								 | 
							
								    --------
							 | 
						||
| 
								 | 
							
								    The following example checks that ``a * a+ * a == a`` and
							 | 
						||
| 
								 | 
							
								    ``a+ * a * a+ == a+``:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    >>> a = np.random.randn(9, 6)
							 | 
						||
| 
								 | 
							
								    >>> B = np.linalg.pinv(a)
							 | 
						||
| 
								 | 
							
								    >>> np.allclose(a, np.dot(a, np.dot(B, a)))
							 | 
						||
| 
								 | 
							
								    True
							 | 
						||
| 
								 | 
							
								    >>> np.allclose(B, np.dot(B, np.dot(a, B)))
							 | 
						||
| 
								 | 
							
								    True
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    a, wrap = _makearray(a)
							 | 
						||
| 
								 | 
							
								    rcond = asarray(rcond)
							 | 
						||
| 
								 | 
							
								    if _is_empty_2d(a):
							 | 
						||
| 
								 | 
							
								        m, n = a.shape[-2:]
							 | 
						||
| 
								 | 
							
								        res = empty(a.shape[:-2] + (n, m), dtype=a.dtype)
							 | 
						||
| 
								 | 
							
								        return wrap(res)
							 | 
						||
| 
								 | 
							
								    a = a.conjugate()
							 | 
						||
| 
								 | 
							
								    u, s, vt = svd(a, full_matrices=False, hermitian=hermitian)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    # discard small singular values
							 | 
						||
| 
								 | 
							
								    cutoff = rcond[..., newaxis] * amax(s, axis=-1, keepdims=True)
							 | 
						||
| 
								 | 
							
								    large = s > cutoff
							 | 
						||
| 
								 | 
							
								    s = divide(1, s, where=large, out=s)
							 | 
						||
| 
								 | 
							
								    s[~large] = 0
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    res = matmul(transpose(vt), multiply(s[..., newaxis], transpose(u)))
							 | 
						||
| 
								 | 
							
								    return wrap(res)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								# Determinant
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								@array_function_dispatch(_unary_dispatcher)
							 | 
						||
| 
								 | 
							
								def slogdet(a):
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    Compute the sign and (natural) logarithm of the determinant of an array.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    If an array has a very small or very large determinant, then a call to
							 | 
						||
| 
								 | 
							
								    `det` may overflow or underflow. This routine is more robust against such
							 | 
						||
| 
								 | 
							
								    issues, because it computes the logarithm of the determinant rather than
							 | 
						||
| 
								 | 
							
								    the determinant itself.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Parameters
							 | 
						||
| 
								 | 
							
								    ----------
							 | 
						||
| 
								 | 
							
								    a : (..., M, M) array_like
							 | 
						||
| 
								 | 
							
								        Input array, has to be a square 2-D array.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Returns
							 | 
						||
| 
								 | 
							
								    -------
							 | 
						||
| 
								 | 
							
								    sign : (...) array_like
							 | 
						||
| 
								 | 
							
								        A number representing the sign of the determinant. For a real matrix,
							 | 
						||
| 
								 | 
							
								        this is 1, 0, or -1. For a complex matrix, this is a complex number
							 | 
						||
| 
								 | 
							
								        with absolute value 1 (i.e., it is on the unit circle), or else 0.
							 | 
						||
| 
								 | 
							
								    logdet : (...) array_like
							 | 
						||
| 
								 | 
							
								        The natural log of the absolute value of the determinant.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    If the determinant is zero, then `sign` will be 0 and `logdet` will be
							 | 
						||
| 
								 | 
							
								    -Inf. In all cases, the determinant is equal to ``sign * np.exp(logdet)``.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    See Also
							 | 
						||
| 
								 | 
							
								    --------
							 | 
						||
| 
								 | 
							
								    det
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Notes
							 | 
						||
| 
								 | 
							
								    -----
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    .. versionadded:: 1.8.0
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Broadcasting rules apply, see the `numpy.linalg` documentation for
							 | 
						||
| 
								 | 
							
								    details.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    .. versionadded:: 1.6.0
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    The determinant is computed via LU factorization using the LAPACK
							 | 
						||
| 
								 | 
							
								    routine ``z/dgetrf``.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Examples
							 | 
						||
| 
								 | 
							
								    --------
							 | 
						||
| 
								 | 
							
								    The determinant of a 2-D array ``[[a, b], [c, d]]`` is ``ad - bc``:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    >>> a = np.array([[1, 2], [3, 4]])
							 | 
						||
| 
								 | 
							
								    >>> (sign, logdet) = np.linalg.slogdet(a)
							 | 
						||
| 
								 | 
							
								    >>> (sign, logdet)
							 | 
						||
| 
								 | 
							
								    (-1, 0.69314718055994529) # may vary
							 | 
						||
| 
								 | 
							
								    >>> sign * np.exp(logdet)
							 | 
						||
| 
								 | 
							
								    -2.0
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Computing log-determinants for a stack of matrices:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    >>> a = np.array([ [[1, 2], [3, 4]], [[1, 2], [2, 1]], [[1, 3], [3, 1]] ])
							 | 
						||
| 
								 | 
							
								    >>> a.shape
							 | 
						||
| 
								 | 
							
								    (3, 2, 2)
							 | 
						||
| 
								 | 
							
								    >>> sign, logdet = np.linalg.slogdet(a)
							 | 
						||
| 
								 | 
							
								    >>> (sign, logdet)
							 | 
						||
| 
								 | 
							
								    (array([-1., -1., -1.]), array([ 0.69314718,  1.09861229,  2.07944154]))
							 | 
						||
| 
								 | 
							
								    >>> sign * np.exp(logdet)
							 | 
						||
| 
								 | 
							
								    array([-2., -3., -8.])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    This routine succeeds where ordinary `det` does not:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    >>> np.linalg.det(np.eye(500) * 0.1)
							 | 
						||
| 
								 | 
							
								    0.0
							 | 
						||
| 
								 | 
							
								    >>> np.linalg.slogdet(np.eye(500) * 0.1)
							 | 
						||
| 
								 | 
							
								    (1, -1151.2925464970228)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    a = asarray(a)
							 | 
						||
| 
								 | 
							
								    _assert_stacked_2d(a)
							 | 
						||
| 
								 | 
							
								    _assert_stacked_square(a)
							 | 
						||
| 
								 | 
							
								    t, result_t = _commonType(a)
							 | 
						||
| 
								 | 
							
								    real_t = _realType(result_t)
							 | 
						||
| 
								 | 
							
								    signature = 'D->Dd' if isComplexType(t) else 'd->dd'
							 | 
						||
| 
								 | 
							
								    sign, logdet = _umath_linalg.slogdet(a, signature=signature)
							 | 
						||
| 
								 | 
							
								    sign = sign.astype(result_t, copy=False)
							 | 
						||
| 
								 | 
							
								    logdet = logdet.astype(real_t, copy=False)
							 | 
						||
| 
								 | 
							
								    return sign, logdet
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								@array_function_dispatch(_unary_dispatcher)
							 | 
						||
| 
								 | 
							
								def det(a):
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    Compute the determinant of an array.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Parameters
							 | 
						||
| 
								 | 
							
								    ----------
							 | 
						||
| 
								 | 
							
								    a : (..., M, M) array_like
							 | 
						||
| 
								 | 
							
								        Input array to compute determinants for.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Returns
							 | 
						||
| 
								 | 
							
								    -------
							 | 
						||
| 
								 | 
							
								    det : (...) array_like
							 | 
						||
| 
								 | 
							
								        Determinant of `a`.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    See Also
							 | 
						||
| 
								 | 
							
								    --------
							 | 
						||
| 
								 | 
							
								    slogdet : Another way to represent the determinant, more suitable
							 | 
						||
| 
								 | 
							
								      for large matrices where underflow/overflow may occur.
							 | 
						||
| 
								 | 
							
								    scipy.linalg.det : Similar function in SciPy.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Notes
							 | 
						||
| 
								 | 
							
								    -----
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    .. versionadded:: 1.8.0
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Broadcasting rules apply, see the `numpy.linalg` documentation for
							 | 
						||
| 
								 | 
							
								    details.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    The determinant is computed via LU factorization using the LAPACK
							 | 
						||
| 
								 | 
							
								    routine ``z/dgetrf``.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Examples
							 | 
						||
| 
								 | 
							
								    --------
							 | 
						||
| 
								 | 
							
								    The determinant of a 2-D array [[a, b], [c, d]] is ad - bc:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    >>> a = np.array([[1, 2], [3, 4]])
							 | 
						||
| 
								 | 
							
								    >>> np.linalg.det(a)
							 | 
						||
| 
								 | 
							
								    -2.0 # may vary
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Computing determinants for a stack of matrices:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    >>> a = np.array([ [[1, 2], [3, 4]], [[1, 2], [2, 1]], [[1, 3], [3, 1]] ])
							 | 
						||
| 
								 | 
							
								    >>> a.shape
							 | 
						||
| 
								 | 
							
								    (3, 2, 2)
							 | 
						||
| 
								 | 
							
								    >>> np.linalg.det(a)
							 | 
						||
| 
								 | 
							
								    array([-2., -3., -8.])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    a = asarray(a)
							 | 
						||
| 
								 | 
							
								    _assert_stacked_2d(a)
							 | 
						||
| 
								 | 
							
								    _assert_stacked_square(a)
							 | 
						||
| 
								 | 
							
								    t, result_t = _commonType(a)
							 | 
						||
| 
								 | 
							
								    signature = 'D->D' if isComplexType(t) else 'd->d'
							 | 
						||
| 
								 | 
							
								    r = _umath_linalg.det(a, signature=signature)
							 | 
						||
| 
								 | 
							
								    r = r.astype(result_t, copy=False)
							 | 
						||
| 
								 | 
							
								    return r
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								# Linear Least Squares
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def _lstsq_dispatcher(a, b, rcond=None):
							 | 
						||
| 
								 | 
							
								    return (a, b)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								@array_function_dispatch(_lstsq_dispatcher)
							 | 
						||
| 
								 | 
							
								def lstsq(a, b, rcond="warn"):
							 | 
						||
| 
								 | 
							
								    r"""
							 | 
						||
| 
								 | 
							
								    Return the least-squares solution to a linear matrix equation.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Computes the vector `x` that approximately solves the equation
							 | 
						||
| 
								 | 
							
								    ``a @ x = b``. The equation may be under-, well-, or over-determined
							 | 
						||
| 
								 | 
							
								    (i.e., the number of linearly independent rows of `a` can be less than,
							 | 
						||
| 
								 | 
							
								    equal to, or greater than its number of linearly independent columns).
							 | 
						||
| 
								 | 
							
								    If `a` is square and of full rank, then `x` (but for round-off error)
							 | 
						||
| 
								 | 
							
								    is the "exact" solution of the equation. Else, `x` minimizes the
							 | 
						||
| 
								 | 
							
								    Euclidean 2-norm :math:`||b - ax||`. If there are multiple minimizing
							 | 
						||
| 
								 | 
							
								    solutions, the one with the smallest 2-norm :math:`||x||` is returned.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Parameters
							 | 
						||
| 
								 | 
							
								    ----------
							 | 
						||
| 
								 | 
							
								    a : (M, N) array_like
							 | 
						||
| 
								 | 
							
								        "Coefficient" matrix.
							 | 
						||
| 
								 | 
							
								    b : {(M,), (M, K)} array_like
							 | 
						||
| 
								 | 
							
								        Ordinate or "dependent variable" values. If `b` is two-dimensional,
							 | 
						||
| 
								 | 
							
								        the least-squares solution is calculated for each of the `K` columns
							 | 
						||
| 
								 | 
							
								        of `b`.
							 | 
						||
| 
								 | 
							
								    rcond : float, optional
							 | 
						||
| 
								 | 
							
								        Cut-off ratio for small singular values of `a`.
							 | 
						||
| 
								 | 
							
								        For the purposes of rank determination, singular values are treated
							 | 
						||
| 
								 | 
							
								        as zero if they are smaller than `rcond` times the largest singular
							 | 
						||
| 
								 | 
							
								        value of `a`.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        .. versionchanged:: 1.14.0
							 | 
						||
| 
								 | 
							
								           If not set, a FutureWarning is given. The previous default
							 | 
						||
| 
								 | 
							
								           of ``-1`` will use the machine precision as `rcond` parameter,
							 | 
						||
| 
								 | 
							
								           the new default will use the machine precision times `max(M, N)`.
							 | 
						||
| 
								 | 
							
								           To silence the warning and use the new default, use ``rcond=None``,
							 | 
						||
| 
								 | 
							
								           to keep using the old behavior, use ``rcond=-1``.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Returns
							 | 
						||
| 
								 | 
							
								    -------
							 | 
						||
| 
								 | 
							
								    x : {(N,), (N, K)} ndarray
							 | 
						||
| 
								 | 
							
								        Least-squares solution. If `b` is two-dimensional,
							 | 
						||
| 
								 | 
							
								        the solutions are in the `K` columns of `x`.
							 | 
						||
| 
								 | 
							
								    residuals : {(1,), (K,), (0,)} ndarray
							 | 
						||
| 
								 | 
							
								        Sums of squared residuals: Squared Euclidean 2-norm for each column in
							 | 
						||
| 
								 | 
							
								        ``b - a @ x``.
							 | 
						||
| 
								 | 
							
								        If the rank of `a` is < N or M <= N, this is an empty array.
							 | 
						||
| 
								 | 
							
								        If `b` is 1-dimensional, this is a (1,) shape array.
							 | 
						||
| 
								 | 
							
								        Otherwise the shape is (K,).
							 | 
						||
| 
								 | 
							
								    rank : int
							 | 
						||
| 
								 | 
							
								        Rank of matrix `a`.
							 | 
						||
| 
								 | 
							
								    s : (min(M, N),) ndarray
							 | 
						||
| 
								 | 
							
								        Singular values of `a`.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Raises
							 | 
						||
| 
								 | 
							
								    ------
							 | 
						||
| 
								 | 
							
								    LinAlgError
							 | 
						||
| 
								 | 
							
								        If computation does not converge.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    See Also
							 | 
						||
| 
								 | 
							
								    --------
							 | 
						||
| 
								 | 
							
								    scipy.linalg.lstsq : Similar function in SciPy.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Notes
							 | 
						||
| 
								 | 
							
								    -----
							 | 
						||
| 
								 | 
							
								    If `b` is a matrix, then all array results are returned as matrices.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Examples
							 | 
						||
| 
								 | 
							
								    --------
							 | 
						||
| 
								 | 
							
								    Fit a line, ``y = mx + c``, through some noisy data-points:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    >>> x = np.array([0, 1, 2, 3])
							 | 
						||
| 
								 | 
							
								    >>> y = np.array([-1, 0.2, 0.9, 2.1])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    By examining the coefficients, we see that the line should have a
							 | 
						||
| 
								 | 
							
								    gradient of roughly 1 and cut the y-axis at, more or less, -1.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    We can rewrite the line equation as ``y = Ap``, where ``A = [[x 1]]``
							 | 
						||
| 
								 | 
							
								    and ``p = [[m], [c]]``.  Now use `lstsq` to solve for `p`:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    >>> A = np.vstack([x, np.ones(len(x))]).T
							 | 
						||
| 
								 | 
							
								    >>> A
							 | 
						||
| 
								 | 
							
								    array([[ 0.,  1.],
							 | 
						||
| 
								 | 
							
								           [ 1.,  1.],
							 | 
						||
| 
								 | 
							
								           [ 2.,  1.],
							 | 
						||
| 
								 | 
							
								           [ 3.,  1.]])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    >>> m, c = np.linalg.lstsq(A, y, rcond=None)[0]
							 | 
						||
| 
								 | 
							
								    >>> m, c
							 | 
						||
| 
								 | 
							
								    (1.0 -0.95) # may vary
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Plot the data along with the fitted line:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    >>> import matplotlib.pyplot as plt
							 | 
						||
| 
								 | 
							
								    >>> _ = plt.plot(x, y, 'o', label='Original data', markersize=10)
							 | 
						||
| 
								 | 
							
								    >>> _ = plt.plot(x, m*x + c, 'r', label='Fitted line')
							 | 
						||
| 
								 | 
							
								    >>> _ = plt.legend()
							 | 
						||
| 
								 | 
							
								    >>> plt.show()
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    a, _ = _makearray(a)
							 | 
						||
| 
								 | 
							
								    b, wrap = _makearray(b)
							 | 
						||
| 
								 | 
							
								    is_1d = b.ndim == 1
							 | 
						||
| 
								 | 
							
								    if is_1d:
							 | 
						||
| 
								 | 
							
								        b = b[:, newaxis]
							 | 
						||
| 
								 | 
							
								    _assert_2d(a, b)
							 | 
						||
| 
								 | 
							
								    m, n = a.shape[-2:]
							 | 
						||
| 
								 | 
							
								    m2, n_rhs = b.shape[-2:]
							 | 
						||
| 
								 | 
							
								    if m != m2:
							 | 
						||
| 
								 | 
							
								        raise LinAlgError('Incompatible dimensions')
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    t, result_t = _commonType(a, b)
							 | 
						||
| 
								 | 
							
								    result_real_t = _realType(result_t)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    # Determine default rcond value
							 | 
						||
| 
								 | 
							
								    if rcond == "warn":
							 | 
						||
| 
								 | 
							
								        # 2017-08-19, 1.14.0
							 | 
						||
| 
								 | 
							
								        warnings.warn("`rcond` parameter will change to the default of "
							 | 
						||
| 
								 | 
							
								                      "machine precision times ``max(M, N)`` where M and N "
							 | 
						||
| 
								 | 
							
								                      "are the input matrix dimensions.\n"
							 | 
						||
| 
								 | 
							
								                      "To use the future default and silence this warning "
							 | 
						||
| 
								 | 
							
								                      "we advise to pass `rcond=None`, to keep using the old, "
							 | 
						||
| 
								 | 
							
								                      "explicitly pass `rcond=-1`.",
							 | 
						||
| 
								 | 
							
								                      FutureWarning, stacklevel=3)
							 | 
						||
| 
								 | 
							
								        rcond = -1
							 | 
						||
| 
								 | 
							
								    if rcond is None:
							 | 
						||
| 
								 | 
							
								        rcond = finfo(t).eps * max(n, m)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    if m <= n:
							 | 
						||
| 
								 | 
							
								        gufunc = _umath_linalg.lstsq_m
							 | 
						||
| 
								 | 
							
								    else:
							 | 
						||
| 
								 | 
							
								        gufunc = _umath_linalg.lstsq_n
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    signature = 'DDd->Ddid' if isComplexType(t) else 'ddd->ddid'
							 | 
						||
| 
								 | 
							
								    extobj = get_linalg_error_extobj(_raise_linalgerror_lstsq)
							 | 
						||
| 
								 | 
							
								    if n_rhs == 0:
							 | 
						||
| 
								 | 
							
								        # lapack can't handle n_rhs = 0 - so allocate the array one larger in that axis
							 | 
						||
| 
								 | 
							
								        b = zeros(b.shape[:-2] + (m, n_rhs + 1), dtype=b.dtype)
							 | 
						||
| 
								 | 
							
								    x, resids, rank, s = gufunc(a, b, rcond, signature=signature, extobj=extobj)
							 | 
						||
| 
								 | 
							
								    if m == 0:
							 | 
						||
| 
								 | 
							
								        x[...] = 0
							 | 
						||
| 
								 | 
							
								    if n_rhs == 0:
							 | 
						||
| 
								 | 
							
								        # remove the item we added
							 | 
						||
| 
								 | 
							
								        x = x[..., :n_rhs]
							 | 
						||
| 
								 | 
							
								        resids = resids[..., :n_rhs]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    # remove the axis we added
							 | 
						||
| 
								 | 
							
								    if is_1d:
							 | 
						||
| 
								 | 
							
								        x = x.squeeze(axis=-1)
							 | 
						||
| 
								 | 
							
								        # we probably should squeeze resids too, but we can't
							 | 
						||
| 
								 | 
							
								        # without breaking compatibility.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    # as documented
							 | 
						||
| 
								 | 
							
								    if rank != n or m <= n:
							 | 
						||
| 
								 | 
							
								        resids = array([], result_real_t)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    # coerce output arrays
							 | 
						||
| 
								 | 
							
								    s = s.astype(result_real_t, copy=False)
							 | 
						||
| 
								 | 
							
								    resids = resids.astype(result_real_t, copy=False)
							 | 
						||
| 
								 | 
							
								    x = x.astype(result_t, copy=True)  # Copying lets the memory in r_parts be freed
							 | 
						||
| 
								 | 
							
								    return wrap(x), wrap(resids), rank, s
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def _multi_svd_norm(x, row_axis, col_axis, op):
							 | 
						||
| 
								 | 
							
								    """Compute a function of the singular values of the 2-D matrices in `x`.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    This is a private utility function used by `numpy.linalg.norm()`.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Parameters
							 | 
						||
| 
								 | 
							
								    ----------
							 | 
						||
| 
								 | 
							
								    x : ndarray
							 | 
						||
| 
								 | 
							
								    row_axis, col_axis : int
							 | 
						||
| 
								 | 
							
								        The axes of `x` that hold the 2-D matrices.
							 | 
						||
| 
								 | 
							
								    op : callable
							 | 
						||
| 
								 | 
							
								        This should be either numpy.amin or `numpy.amax` or `numpy.sum`.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Returns
							 | 
						||
| 
								 | 
							
								    -------
							 | 
						||
| 
								 | 
							
								    result : float or ndarray
							 | 
						||
| 
								 | 
							
								        If `x` is 2-D, the return values is a float.
							 | 
						||
| 
								 | 
							
								        Otherwise, it is an array with ``x.ndim - 2`` dimensions.
							 | 
						||
| 
								 | 
							
								        The return values are either the minimum or maximum or sum of the
							 | 
						||
| 
								 | 
							
								        singular values of the matrices, depending on whether `op`
							 | 
						||
| 
								 | 
							
								        is `numpy.amin` or `numpy.amax` or `numpy.sum`.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    y = moveaxis(x, (row_axis, col_axis), (-2, -1))
							 | 
						||
| 
								 | 
							
								    result = op(svd(y, compute_uv=False), axis=-1)
							 | 
						||
| 
								 | 
							
								    return result
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def _norm_dispatcher(x, ord=None, axis=None, keepdims=None):
							 | 
						||
| 
								 | 
							
								    return (x,)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								@array_function_dispatch(_norm_dispatcher)
							 | 
						||
| 
								 | 
							
								def norm(x, ord=None, axis=None, keepdims=False):
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    Matrix or vector norm.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    This function is able to return one of eight different matrix norms,
							 | 
						||
| 
								 | 
							
								    or one of an infinite number of vector norms (described below), depending
							 | 
						||
| 
								 | 
							
								    on the value of the ``ord`` parameter.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Parameters
							 | 
						||
| 
								 | 
							
								    ----------
							 | 
						||
| 
								 | 
							
								    x : array_like
							 | 
						||
| 
								 | 
							
								        Input array.  If `axis` is None, `x` must be 1-D or 2-D, unless `ord`
							 | 
						||
| 
								 | 
							
								        is None. If both `axis` and `ord` are None, the 2-norm of
							 | 
						||
| 
								 | 
							
								        ``x.ravel`` will be returned.
							 | 
						||
| 
								 | 
							
								    ord : {non-zero int, inf, -inf, 'fro', 'nuc'}, optional
							 | 
						||
| 
								 | 
							
								        Order of the norm (see table under ``Notes``). inf means numpy's
							 | 
						||
| 
								 | 
							
								        `inf` object. The default is None.
							 | 
						||
| 
								 | 
							
								    axis : {None, int, 2-tuple of ints}, optional.
							 | 
						||
| 
								 | 
							
								        If `axis` is an integer, it specifies the axis of `x` along which to
							 | 
						||
| 
								 | 
							
								        compute the vector norms.  If `axis` is a 2-tuple, it specifies the
							 | 
						||
| 
								 | 
							
								        axes that hold 2-D matrices, and the matrix norms of these matrices
							 | 
						||
| 
								 | 
							
								        are computed.  If `axis` is None then either a vector norm (when `x`
							 | 
						||
| 
								 | 
							
								        is 1-D) or a matrix norm (when `x` is 2-D) is returned. The default
							 | 
						||
| 
								 | 
							
								        is None.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        .. versionadded:: 1.8.0
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    keepdims : bool, optional
							 | 
						||
| 
								 | 
							
								        If this is set to True, the axes which are normed over are left in the
							 | 
						||
| 
								 | 
							
								        result as dimensions with size one.  With this option the result will
							 | 
						||
| 
								 | 
							
								        broadcast correctly against the original `x`.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        .. versionadded:: 1.10.0
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Returns
							 | 
						||
| 
								 | 
							
								    -------
							 | 
						||
| 
								 | 
							
								    n : float or ndarray
							 | 
						||
| 
								 | 
							
								        Norm of the matrix or vector(s).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    See Also
							 | 
						||
| 
								 | 
							
								    --------
							 | 
						||
| 
								 | 
							
								    scipy.linalg.norm : Similar function in SciPy.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Notes
							 | 
						||
| 
								 | 
							
								    -----
							 | 
						||
| 
								 | 
							
								    For values of ``ord < 1``, the result is, strictly speaking, not a
							 | 
						||
| 
								 | 
							
								    mathematical 'norm', but it may still be useful for various numerical
							 | 
						||
| 
								 | 
							
								    purposes.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    The following norms can be calculated:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    =====  ============================  ==========================
							 | 
						||
| 
								 | 
							
								    ord    norm for matrices             norm for vectors
							 | 
						||
| 
								 | 
							
								    =====  ============================  ==========================
							 | 
						||
| 
								 | 
							
								    None   Frobenius norm                2-norm
							 | 
						||
| 
								 | 
							
								    'fro'  Frobenius norm                --
							 | 
						||
| 
								 | 
							
								    'nuc'  nuclear norm                  --
							 | 
						||
| 
								 | 
							
								    inf    max(sum(abs(x), axis=1))      max(abs(x))
							 | 
						||
| 
								 | 
							
								    -inf   min(sum(abs(x), axis=1))      min(abs(x))
							 | 
						||
| 
								 | 
							
								    0      --                            sum(x != 0)
							 | 
						||
| 
								 | 
							
								    1      max(sum(abs(x), axis=0))      as below
							 | 
						||
| 
								 | 
							
								    -1     min(sum(abs(x), axis=0))      as below
							 | 
						||
| 
								 | 
							
								    2      2-norm (largest sing. value)  as below
							 | 
						||
| 
								 | 
							
								    -2     smallest singular value       as below
							 | 
						||
| 
								 | 
							
								    other  --                            sum(abs(x)**ord)**(1./ord)
							 | 
						||
| 
								 | 
							
								    =====  ============================  ==========================
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    The Frobenius norm is given by [1]_:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        :math:`||A||_F = [\\sum_{i,j} abs(a_{i,j})^2]^{1/2}`
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    The nuclear norm is the sum of the singular values.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Both the Frobenius and nuclear norm orders are only defined for
							 | 
						||
| 
								 | 
							
								    matrices and raise a ValueError when ``x.ndim != 2``.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    References
							 | 
						||
| 
								 | 
							
								    ----------
							 | 
						||
| 
								 | 
							
								    .. [1] G. H. Golub and C. F. Van Loan, *Matrix Computations*,
							 | 
						||
| 
								 | 
							
								           Baltimore, MD, Johns Hopkins University Press, 1985, pg. 15
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Examples
							 | 
						||
| 
								 | 
							
								    --------
							 | 
						||
| 
								 | 
							
								    >>> from numpy import linalg as LA
							 | 
						||
| 
								 | 
							
								    >>> a = np.arange(9) - 4
							 | 
						||
| 
								 | 
							
								    >>> a
							 | 
						||
| 
								 | 
							
								    array([-4, -3, -2, ...,  2,  3,  4])
							 | 
						||
| 
								 | 
							
								    >>> b = a.reshape((3, 3))
							 | 
						||
| 
								 | 
							
								    >>> b
							 | 
						||
| 
								 | 
							
								    array([[-4, -3, -2],
							 | 
						||
| 
								 | 
							
								           [-1,  0,  1],
							 | 
						||
| 
								 | 
							
								           [ 2,  3,  4]])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    >>> LA.norm(a)
							 | 
						||
| 
								 | 
							
								    7.745966692414834
							 | 
						||
| 
								 | 
							
								    >>> LA.norm(b)
							 | 
						||
| 
								 | 
							
								    7.745966692414834
							 | 
						||
| 
								 | 
							
								    >>> LA.norm(b, 'fro')
							 | 
						||
| 
								 | 
							
								    7.745966692414834
							 | 
						||
| 
								 | 
							
								    >>> LA.norm(a, np.inf)
							 | 
						||
| 
								 | 
							
								    4.0
							 | 
						||
| 
								 | 
							
								    >>> LA.norm(b, np.inf)
							 | 
						||
| 
								 | 
							
								    9.0
							 | 
						||
| 
								 | 
							
								    >>> LA.norm(a, -np.inf)
							 | 
						||
| 
								 | 
							
								    0.0
							 | 
						||
| 
								 | 
							
								    >>> LA.norm(b, -np.inf)
							 | 
						||
| 
								 | 
							
								    2.0
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    >>> LA.norm(a, 1)
							 | 
						||
| 
								 | 
							
								    20.0
							 | 
						||
| 
								 | 
							
								    >>> LA.norm(b, 1)
							 | 
						||
| 
								 | 
							
								    7.0
							 | 
						||
| 
								 | 
							
								    >>> LA.norm(a, -1)
							 | 
						||
| 
								 | 
							
								    -4.6566128774142013e-010
							 | 
						||
| 
								 | 
							
								    >>> LA.norm(b, -1)
							 | 
						||
| 
								 | 
							
								    6.0
							 | 
						||
| 
								 | 
							
								    >>> LA.norm(a, 2)
							 | 
						||
| 
								 | 
							
								    7.745966692414834
							 | 
						||
| 
								 | 
							
								    >>> LA.norm(b, 2)
							 | 
						||
| 
								 | 
							
								    7.3484692283495345
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    >>> LA.norm(a, -2)
							 | 
						||
| 
								 | 
							
								    0.0
							 | 
						||
| 
								 | 
							
								    >>> LA.norm(b, -2)
							 | 
						||
| 
								 | 
							
								    1.8570331885190563e-016 # may vary
							 | 
						||
| 
								 | 
							
								    >>> LA.norm(a, 3)
							 | 
						||
| 
								 | 
							
								    5.8480354764257312 # may vary
							 | 
						||
| 
								 | 
							
								    >>> LA.norm(a, -3)
							 | 
						||
| 
								 | 
							
								    0.0
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Using the `axis` argument to compute vector norms:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    >>> c = np.array([[ 1, 2, 3],
							 | 
						||
| 
								 | 
							
								    ...               [-1, 1, 4]])
							 | 
						||
| 
								 | 
							
								    >>> LA.norm(c, axis=0)
							 | 
						||
| 
								 | 
							
								    array([ 1.41421356,  2.23606798,  5.        ])
							 | 
						||
| 
								 | 
							
								    >>> LA.norm(c, axis=1)
							 | 
						||
| 
								 | 
							
								    array([ 3.74165739,  4.24264069])
							 | 
						||
| 
								 | 
							
								    >>> LA.norm(c, ord=1, axis=1)
							 | 
						||
| 
								 | 
							
								    array([ 6.,  6.])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Using the `axis` argument to compute matrix norms:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    >>> m = np.arange(8).reshape(2,2,2)
							 | 
						||
| 
								 | 
							
								    >>> LA.norm(m, axis=(1,2))
							 | 
						||
| 
								 | 
							
								    array([  3.74165739,  11.22497216])
							 | 
						||
| 
								 | 
							
								    >>> LA.norm(m[0, :, :]), LA.norm(m[1, :, :])
							 | 
						||
| 
								 | 
							
								    (3.7416573867739413, 11.224972160321824)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    x = asarray(x)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    if not issubclass(x.dtype.type, (inexact, object_)):
							 | 
						||
| 
								 | 
							
								        x = x.astype(float)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    # Immediately handle some default, simple, fast, and common cases.
							 | 
						||
| 
								 | 
							
								    if axis is None:
							 | 
						||
| 
								 | 
							
								        ndim = x.ndim
							 | 
						||
| 
								 | 
							
								        if ((ord is None) or
							 | 
						||
| 
								 | 
							
								            (ord in ('f', 'fro') and ndim == 2) or
							 | 
						||
| 
								 | 
							
								            (ord == 2 and ndim == 1)):
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            x = x.ravel(order='K')
							 | 
						||
| 
								 | 
							
								            if isComplexType(x.dtype.type):
							 | 
						||
| 
								 | 
							
								                x_real = x.real
							 | 
						||
| 
								 | 
							
								                x_imag = x.imag
							 | 
						||
| 
								 | 
							
								                sqnorm = x_real.dot(x_real) + x_imag.dot(x_imag)
							 | 
						||
| 
								 | 
							
								            else:
							 | 
						||
| 
								 | 
							
								                sqnorm = x.dot(x)
							 | 
						||
| 
								 | 
							
								            ret = sqrt(sqnorm)
							 | 
						||
| 
								 | 
							
								            if keepdims:
							 | 
						||
| 
								 | 
							
								                ret = ret.reshape(ndim*[1])
							 | 
						||
| 
								 | 
							
								            return ret
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    # Normalize the `axis` argument to a tuple.
							 | 
						||
| 
								 | 
							
								    nd = x.ndim
							 | 
						||
| 
								 | 
							
								    if axis is None:
							 | 
						||
| 
								 | 
							
								        axis = tuple(range(nd))
							 | 
						||
| 
								 | 
							
								    elif not isinstance(axis, tuple):
							 | 
						||
| 
								 | 
							
								        try:
							 | 
						||
| 
								 | 
							
								            axis = int(axis)
							 | 
						||
| 
								 | 
							
								        except Exception as e:
							 | 
						||
| 
								 | 
							
								            raise TypeError("'axis' must be None, an integer or a tuple of integers") from e
							 | 
						||
| 
								 | 
							
								        axis = (axis,)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    if len(axis) == 1:
							 | 
						||
| 
								 | 
							
								        if ord == Inf:
							 | 
						||
| 
								 | 
							
								            return abs(x).max(axis=axis, keepdims=keepdims)
							 | 
						||
| 
								 | 
							
								        elif ord == -Inf:
							 | 
						||
| 
								 | 
							
								            return abs(x).min(axis=axis, keepdims=keepdims)
							 | 
						||
| 
								 | 
							
								        elif ord == 0:
							 | 
						||
| 
								 | 
							
								            # Zero norm
							 | 
						||
| 
								 | 
							
								            return (x != 0).astype(x.real.dtype).sum(axis=axis, keepdims=keepdims)
							 | 
						||
| 
								 | 
							
								        elif ord == 1:
							 | 
						||
| 
								 | 
							
								            # special case for speedup
							 | 
						||
| 
								 | 
							
								            return add.reduce(abs(x), axis=axis, keepdims=keepdims)
							 | 
						||
| 
								 | 
							
								        elif ord is None or ord == 2:
							 | 
						||
| 
								 | 
							
								            # special case for speedup
							 | 
						||
| 
								 | 
							
								            s = (x.conj() * x).real
							 | 
						||
| 
								 | 
							
								            return sqrt(add.reduce(s, axis=axis, keepdims=keepdims))
							 | 
						||
| 
								 | 
							
								        # None of the str-type keywords for ord ('fro', 'nuc')
							 | 
						||
| 
								 | 
							
								        # are valid for vectors
							 | 
						||
| 
								 | 
							
								        elif isinstance(ord, str):
							 | 
						||
| 
								 | 
							
								            raise ValueError(f"Invalid norm order '{ord}' for vectors")
							 | 
						||
| 
								 | 
							
								        else:
							 | 
						||
| 
								 | 
							
								            absx = abs(x)
							 | 
						||
| 
								 | 
							
								            absx **= ord
							 | 
						||
| 
								 | 
							
								            ret = add.reduce(absx, axis=axis, keepdims=keepdims)
							 | 
						||
| 
								 | 
							
								            ret **= reciprocal(ord, dtype=ret.dtype)
							 | 
						||
| 
								 | 
							
								            return ret
							 | 
						||
| 
								 | 
							
								    elif len(axis) == 2:
							 | 
						||
| 
								 | 
							
								        row_axis, col_axis = axis
							 | 
						||
| 
								 | 
							
								        row_axis = normalize_axis_index(row_axis, nd)
							 | 
						||
| 
								 | 
							
								        col_axis = normalize_axis_index(col_axis, nd)
							 | 
						||
| 
								 | 
							
								        if row_axis == col_axis:
							 | 
						||
| 
								 | 
							
								            raise ValueError('Duplicate axes given.')
							 | 
						||
| 
								 | 
							
								        if ord == 2:
							 | 
						||
| 
								 | 
							
								            ret =  _multi_svd_norm(x, row_axis, col_axis, amax)
							 | 
						||
| 
								 | 
							
								        elif ord == -2:
							 | 
						||
| 
								 | 
							
								            ret = _multi_svd_norm(x, row_axis, col_axis, amin)
							 | 
						||
| 
								 | 
							
								        elif ord == 1:
							 | 
						||
| 
								 | 
							
								            if col_axis > row_axis:
							 | 
						||
| 
								 | 
							
								                col_axis -= 1
							 | 
						||
| 
								 | 
							
								            ret = add.reduce(abs(x), axis=row_axis).max(axis=col_axis)
							 | 
						||
| 
								 | 
							
								        elif ord == Inf:
							 | 
						||
| 
								 | 
							
								            if row_axis > col_axis:
							 | 
						||
| 
								 | 
							
								                row_axis -= 1
							 | 
						||
| 
								 | 
							
								            ret = add.reduce(abs(x), axis=col_axis).max(axis=row_axis)
							 | 
						||
| 
								 | 
							
								        elif ord == -1:
							 | 
						||
| 
								 | 
							
								            if col_axis > row_axis:
							 | 
						||
| 
								 | 
							
								                col_axis -= 1
							 | 
						||
| 
								 | 
							
								            ret = add.reduce(abs(x), axis=row_axis).min(axis=col_axis)
							 | 
						||
| 
								 | 
							
								        elif ord == -Inf:
							 | 
						||
| 
								 | 
							
								            if row_axis > col_axis:
							 | 
						||
| 
								 | 
							
								                row_axis -= 1
							 | 
						||
| 
								 | 
							
								            ret = add.reduce(abs(x), axis=col_axis).min(axis=row_axis)
							 | 
						||
| 
								 | 
							
								        elif ord in [None, 'fro', 'f']:
							 | 
						||
| 
								 | 
							
								            ret = sqrt(add.reduce((x.conj() * x).real, axis=axis))
							 | 
						||
| 
								 | 
							
								        elif ord == 'nuc':
							 | 
						||
| 
								 | 
							
								            ret = _multi_svd_norm(x, row_axis, col_axis, sum)
							 | 
						||
| 
								 | 
							
								        else:
							 | 
						||
| 
								 | 
							
								            raise ValueError("Invalid norm order for matrices.")
							 | 
						||
| 
								 | 
							
								        if keepdims:
							 | 
						||
| 
								 | 
							
								            ret_shape = list(x.shape)
							 | 
						||
| 
								 | 
							
								            ret_shape[axis[0]] = 1
							 | 
						||
| 
								 | 
							
								            ret_shape[axis[1]] = 1
							 | 
						||
| 
								 | 
							
								            ret = ret.reshape(ret_shape)
							 | 
						||
| 
								 | 
							
								        return ret
							 | 
						||
| 
								 | 
							
								    else:
							 | 
						||
| 
								 | 
							
								        raise ValueError("Improper number of dimensions to norm.")
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								# multi_dot
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def _multidot_dispatcher(arrays, *, out=None):
							 | 
						||
| 
								 | 
							
								    yield from arrays
							 | 
						||
| 
								 | 
							
								    yield out
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								@array_function_dispatch(_multidot_dispatcher)
							 | 
						||
| 
								 | 
							
								def multi_dot(arrays, *, out=None):
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    Compute the dot product of two or more arrays in a single function call,
							 | 
						||
| 
								 | 
							
								    while automatically selecting the fastest evaluation order.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    `multi_dot` chains `numpy.dot` and uses optimal parenthesization
							 | 
						||
| 
								 | 
							
								    of the matrices [1]_ [2]_. Depending on the shapes of the matrices,
							 | 
						||
| 
								 | 
							
								    this can speed up the multiplication a lot.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    If the first argument is 1-D it is treated as a row vector.
							 | 
						||
| 
								 | 
							
								    If the last argument is 1-D it is treated as a column vector.
							 | 
						||
| 
								 | 
							
								    The other arguments must be 2-D.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Think of `multi_dot` as::
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        def multi_dot(arrays): return functools.reduce(np.dot, arrays)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Parameters
							 | 
						||
| 
								 | 
							
								    ----------
							 | 
						||
| 
								 | 
							
								    arrays : sequence of array_like
							 | 
						||
| 
								 | 
							
								        If the first argument is 1-D it is treated as row vector.
							 | 
						||
| 
								 | 
							
								        If the last argument is 1-D it is treated as column vector.
							 | 
						||
| 
								 | 
							
								        The other arguments must be 2-D.
							 | 
						||
| 
								 | 
							
								    out : ndarray, optional
							 | 
						||
| 
								 | 
							
								        Output argument. This must have the exact kind that would be returned
							 | 
						||
| 
								 | 
							
								        if it was not used. In particular, it must have the right type, must be
							 | 
						||
| 
								 | 
							
								        C-contiguous, and its dtype must be the dtype that would be returned
							 | 
						||
| 
								 | 
							
								        for `dot(a, b)`. This is a performance feature. Therefore, if these
							 | 
						||
| 
								 | 
							
								        conditions are not met, an exception is raised, instead of attempting
							 | 
						||
| 
								 | 
							
								        to be flexible.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        .. versionadded:: 1.19.0
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Returns
							 | 
						||
| 
								 | 
							
								    -------
							 | 
						||
| 
								 | 
							
								    output : ndarray
							 | 
						||
| 
								 | 
							
								        Returns the dot product of the supplied arrays.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    See Also
							 | 
						||
| 
								 | 
							
								    --------
							 | 
						||
| 
								 | 
							
								    numpy.dot : dot multiplication with two arguments.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    References
							 | 
						||
| 
								 | 
							
								    ----------
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    .. [1] Cormen, "Introduction to Algorithms", Chapter 15.2, p. 370-378
							 | 
						||
| 
								 | 
							
								    .. [2] https://en.wikipedia.org/wiki/Matrix_chain_multiplication
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Examples
							 | 
						||
| 
								 | 
							
								    --------
							 | 
						||
| 
								 | 
							
								    `multi_dot` allows you to write::
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    >>> from numpy.linalg import multi_dot
							 | 
						||
| 
								 | 
							
								    >>> # Prepare some data
							 | 
						||
| 
								 | 
							
								    >>> A = np.random.random((10000, 100))
							 | 
						||
| 
								 | 
							
								    >>> B = np.random.random((100, 1000))
							 | 
						||
| 
								 | 
							
								    >>> C = np.random.random((1000, 5))
							 | 
						||
| 
								 | 
							
								    >>> D = np.random.random((5, 333))
							 | 
						||
| 
								 | 
							
								    >>> # the actual dot multiplication
							 | 
						||
| 
								 | 
							
								    >>> _ = multi_dot([A, B, C, D])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    instead of::
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    >>> _ = np.dot(np.dot(np.dot(A, B), C), D)
							 | 
						||
| 
								 | 
							
								    >>> # or
							 | 
						||
| 
								 | 
							
								    >>> _ = A.dot(B).dot(C).dot(D)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Notes
							 | 
						||
| 
								 | 
							
								    -----
							 | 
						||
| 
								 | 
							
								    The cost for a matrix multiplication can be calculated with the
							 | 
						||
| 
								 | 
							
								    following function::
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        def cost(A, B):
							 | 
						||
| 
								 | 
							
								            return A.shape[0] * A.shape[1] * B.shape[1]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Assume we have three matrices
							 | 
						||
| 
								 | 
							
								    :math:`A_{10x100}, B_{100x5}, C_{5x50}`.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    The costs for the two different parenthesizations are as follows::
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        cost((AB)C) = 10*100*5 + 10*5*50   = 5000 + 2500   = 7500
							 | 
						||
| 
								 | 
							
								        cost(A(BC)) = 10*100*50 + 100*5*50 = 50000 + 25000 = 75000
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    n = len(arrays)
							 | 
						||
| 
								 | 
							
								    # optimization only makes sense for len(arrays) > 2
							 | 
						||
| 
								 | 
							
								    if n < 2:
							 | 
						||
| 
								 | 
							
								        raise ValueError("Expecting at least two arrays.")
							 | 
						||
| 
								 | 
							
								    elif n == 2:
							 | 
						||
| 
								 | 
							
								        return dot(arrays[0], arrays[1], out=out)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    arrays = [asanyarray(a) for a in arrays]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    # save original ndim to reshape the result array into the proper form later
							 | 
						||
| 
								 | 
							
								    ndim_first, ndim_last = arrays[0].ndim, arrays[-1].ndim
							 | 
						||
| 
								 | 
							
								    # Explicitly convert vectors to 2D arrays to keep the logic of the internal
							 | 
						||
| 
								 | 
							
								    # _multi_dot_* functions as simple as possible.
							 | 
						||
| 
								 | 
							
								    if arrays[0].ndim == 1:
							 | 
						||
| 
								 | 
							
								        arrays[0] = atleast_2d(arrays[0])
							 | 
						||
| 
								 | 
							
								    if arrays[-1].ndim == 1:
							 | 
						||
| 
								 | 
							
								        arrays[-1] = atleast_2d(arrays[-1]).T
							 | 
						||
| 
								 | 
							
								    _assert_2d(*arrays)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    # _multi_dot_three is much faster than _multi_dot_matrix_chain_order
							 | 
						||
| 
								 | 
							
								    if n == 3:
							 | 
						||
| 
								 | 
							
								        result = _multi_dot_three(arrays[0], arrays[1], arrays[2], out=out)
							 | 
						||
| 
								 | 
							
								    else:
							 | 
						||
| 
								 | 
							
								        order = _multi_dot_matrix_chain_order(arrays)
							 | 
						||
| 
								 | 
							
								        result = _multi_dot(arrays, order, 0, n - 1, out=out)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    # return proper shape
							 | 
						||
| 
								 | 
							
								    if ndim_first == 1 and ndim_last == 1:
							 | 
						||
| 
								 | 
							
								        return result[0, 0]  # scalar
							 | 
						||
| 
								 | 
							
								    elif ndim_first == 1 or ndim_last == 1:
							 | 
						||
| 
								 | 
							
								        return result.ravel()  # 1-D
							 | 
						||
| 
								 | 
							
								    else:
							 | 
						||
| 
								 | 
							
								        return result
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def _multi_dot_three(A, B, C, out=None):
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    Find the best order for three arrays and do the multiplication.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    For three arguments `_multi_dot_three` is approximately 15 times faster
							 | 
						||
| 
								 | 
							
								    than `_multi_dot_matrix_chain_order`
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    a0, a1b0 = A.shape
							 | 
						||
| 
								 | 
							
								    b1c0, c1 = C.shape
							 | 
						||
| 
								 | 
							
								    # cost1 = cost((AB)C) = a0*a1b0*b1c0 + a0*b1c0*c1
							 | 
						||
| 
								 | 
							
								    cost1 = a0 * b1c0 * (a1b0 + c1)
							 | 
						||
| 
								 | 
							
								    # cost2 = cost(A(BC)) = a1b0*b1c0*c1 + a0*a1b0*c1
							 | 
						||
| 
								 | 
							
								    cost2 = a1b0 * c1 * (a0 + b1c0)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    if cost1 < cost2:
							 | 
						||
| 
								 | 
							
								        return dot(dot(A, B), C, out=out)
							 | 
						||
| 
								 | 
							
								    else:
							 | 
						||
| 
								 | 
							
								        return dot(A, dot(B, C), out=out)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def _multi_dot_matrix_chain_order(arrays, return_costs=False):
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    Return a np.array that encodes the optimal order of mutiplications.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    The optimal order array is then used by `_multi_dot()` to do the
							 | 
						||
| 
								 | 
							
								    multiplication.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Also return the cost matrix if `return_costs` is `True`
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    The implementation CLOSELY follows Cormen, "Introduction to Algorithms",
							 | 
						||
| 
								 | 
							
								    Chapter 15.2, p. 370-378.  Note that Cormen uses 1-based indices.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        cost[i, j] = min([
							 | 
						||
| 
								 | 
							
								            cost[prefix] + cost[suffix] + cost_mult(prefix, suffix)
							 | 
						||
| 
								 | 
							
								            for k in range(i, j)])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    n = len(arrays)
							 | 
						||
| 
								 | 
							
								    # p stores the dimensions of the matrices
							 | 
						||
| 
								 | 
							
								    # Example for p: A_{10x100}, B_{100x5}, C_{5x50} --> p = [10, 100, 5, 50]
							 | 
						||
| 
								 | 
							
								    p = [a.shape[0] for a in arrays] + [arrays[-1].shape[1]]
							 | 
						||
| 
								 | 
							
								    # m is a matrix of costs of the subproblems
							 | 
						||
| 
								 | 
							
								    # m[i,j]: min number of scalar multiplications needed to compute A_{i..j}
							 | 
						||
| 
								 | 
							
								    m = zeros((n, n), dtype=double)
							 | 
						||
| 
								 | 
							
								    # s is the actual ordering
							 | 
						||
| 
								 | 
							
								    # s[i, j] is the value of k at which we split the product A_i..A_j
							 | 
						||
| 
								 | 
							
								    s = empty((n, n), dtype=intp)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    for l in range(1, n):
							 | 
						||
| 
								 | 
							
								        for i in range(n - l):
							 | 
						||
| 
								 | 
							
								            j = i + l
							 | 
						||
| 
								 | 
							
								            m[i, j] = Inf
							 | 
						||
| 
								 | 
							
								            for k in range(i, j):
							 | 
						||
| 
								 | 
							
								                q = m[i, k] + m[k+1, j] + p[i]*p[k+1]*p[j+1]
							 | 
						||
| 
								 | 
							
								                if q < m[i, j]:
							 | 
						||
| 
								 | 
							
								                    m[i, j] = q
							 | 
						||
| 
								 | 
							
								                    s[i, j] = k  # Note that Cormen uses 1-based index
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    return (s, m) if return_costs else s
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def _multi_dot(arrays, order, i, j, out=None):
							 | 
						||
| 
								 | 
							
								    """Actually do the multiplication with the given order."""
							 | 
						||
| 
								 | 
							
								    if i == j:
							 | 
						||
| 
								 | 
							
								        # the initial call with non-None out should never get here
							 | 
						||
| 
								 | 
							
								        assert out is None
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        return arrays[i]
							 | 
						||
| 
								 | 
							
								    else:
							 | 
						||
| 
								 | 
							
								        return dot(_multi_dot(arrays, order, i, order[i, j]),
							 | 
						||
| 
								 | 
							
								                   _multi_dot(arrays, order, order[i, j] + 1, j),
							 | 
						||
| 
								 | 
							
								                   out=out)
							 |