You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					355 lines
				
				12 KiB
			
		
		
			
		
	
	
					355 lines
				
				12 KiB
			| 
								 
											3 years ago
										 
									 | 
							
								"""Tests of interaction of matrix with other parts of numpy.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								Note that tests with MaskedArray and linalg are done in separate files.
							 | 
						||
| 
								 | 
							
								"""
							 | 
						||
| 
								 | 
							
								import pytest
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								import textwrap
							 | 
						||
| 
								 | 
							
								import warnings
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								import numpy as np
							 | 
						||
| 
								 | 
							
								from numpy.testing import (assert_, assert_equal, assert_raises,
							 | 
						||
| 
								 | 
							
								                           assert_raises_regex, assert_array_equal,
							 | 
						||
| 
								 | 
							
								                           assert_almost_equal, assert_array_almost_equal)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def test_fancy_indexing():
							 | 
						||
| 
								 | 
							
								    # The matrix class messes with the shape. While this is always
							 | 
						||
| 
								 | 
							
								    # weird (getitem is not used, it does not have setitem nor knows
							 | 
						||
| 
								 | 
							
								    # about fancy indexing), this tests gh-3110
							 | 
						||
| 
								 | 
							
								    # 2018-04-29: moved here from core.tests.test_index.
							 | 
						||
| 
								 | 
							
								    m = np.matrix([[1, 2], [3, 4]])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    assert_(isinstance(m[[0, 1, 0], :], np.matrix))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    # gh-3110. Note the transpose currently because matrices do *not*
							 | 
						||
| 
								 | 
							
								    # support dimension fixing for fancy indexing correctly.
							 | 
						||
| 
								 | 
							
								    x = np.asmatrix(np.arange(50).reshape(5, 10))
							 | 
						||
| 
								 | 
							
								    assert_equal(x[:2, np.array(-1)], x[:2, -1].T)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def test_polynomial_mapdomain():
							 | 
						||
| 
								 | 
							
								    # test that polynomial preserved matrix subtype.
							 | 
						||
| 
								 | 
							
								    # 2018-04-29: moved here from polynomial.tests.polyutils.
							 | 
						||
| 
								 | 
							
								    dom1 = [0, 4]
							 | 
						||
| 
								 | 
							
								    dom2 = [1, 3]
							 | 
						||
| 
								 | 
							
								    x = np.matrix([dom1, dom1])
							 | 
						||
| 
								 | 
							
								    res = np.polynomial.polyutils.mapdomain(x, dom1, dom2)
							 | 
						||
| 
								 | 
							
								    assert_(isinstance(res, np.matrix))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def test_sort_matrix_none():
							 | 
						||
| 
								 | 
							
								    # 2018-04-29: moved here from core.tests.test_multiarray
							 | 
						||
| 
								 | 
							
								    a = np.matrix([[2, 1, 0]])
							 | 
						||
| 
								 | 
							
								    actual = np.sort(a, axis=None)
							 | 
						||
| 
								 | 
							
								    expected = np.matrix([[0, 1, 2]])
							 | 
						||
| 
								 | 
							
								    assert_equal(actual, expected)
							 | 
						||
| 
								 | 
							
								    assert_(type(expected) is np.matrix)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def test_partition_matrix_none():
							 | 
						||
| 
								 | 
							
								    # gh-4301
							 | 
						||
| 
								 | 
							
								    # 2018-04-29: moved here from core.tests.test_multiarray
							 | 
						||
| 
								 | 
							
								    a = np.matrix([[2, 1, 0]])
							 | 
						||
| 
								 | 
							
								    actual = np.partition(a, 1, axis=None)
							 | 
						||
| 
								 | 
							
								    expected = np.matrix([[0, 1, 2]])
							 | 
						||
| 
								 | 
							
								    assert_equal(actual, expected)
							 | 
						||
| 
								 | 
							
								    assert_(type(expected) is np.matrix)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def test_dot_scalar_and_matrix_of_objects():
							 | 
						||
| 
								 | 
							
								    # Ticket #2469
							 | 
						||
| 
								 | 
							
								    # 2018-04-29: moved here from core.tests.test_multiarray
							 | 
						||
| 
								 | 
							
								    arr = np.matrix([1, 2], dtype=object)
							 | 
						||
| 
								 | 
							
								    desired = np.matrix([[3, 6]], dtype=object)
							 | 
						||
| 
								 | 
							
								    assert_equal(np.dot(arr, 3), desired)
							 | 
						||
| 
								 | 
							
								    assert_equal(np.dot(3, arr), desired)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def test_inner_scalar_and_matrix():
							 | 
						||
| 
								 | 
							
								    # 2018-04-29: moved here from core.tests.test_multiarray
							 | 
						||
| 
								 | 
							
								    for dt in np.typecodes['AllInteger'] + np.typecodes['AllFloat'] + '?':
							 | 
						||
| 
								 | 
							
								        sca = np.array(3, dtype=dt)[()]
							 | 
						||
| 
								 | 
							
								        arr = np.matrix([[1, 2], [3, 4]], dtype=dt)
							 | 
						||
| 
								 | 
							
								        desired = np.matrix([[3, 6], [9, 12]], dtype=dt)
							 | 
						||
| 
								 | 
							
								        assert_equal(np.inner(arr, sca), desired)
							 | 
						||
| 
								 | 
							
								        assert_equal(np.inner(sca, arr), desired)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def test_inner_scalar_and_matrix_of_objects():
							 | 
						||
| 
								 | 
							
								    # Ticket #4482
							 | 
						||
| 
								 | 
							
								    # 2018-04-29: moved here from core.tests.test_multiarray
							 | 
						||
| 
								 | 
							
								    arr = np.matrix([1, 2], dtype=object)
							 | 
						||
| 
								 | 
							
								    desired = np.matrix([[3, 6]], dtype=object)
							 | 
						||
| 
								 | 
							
								    assert_equal(np.inner(arr, 3), desired)
							 | 
						||
| 
								 | 
							
								    assert_equal(np.inner(3, arr), desired)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def test_iter_allocate_output_subtype():
							 | 
						||
| 
								 | 
							
								    # Make sure that the subtype with priority wins
							 | 
						||
| 
								 | 
							
								    # 2018-04-29: moved here from core.tests.test_nditer, given the
							 | 
						||
| 
								 | 
							
								    # matrix specific shape test.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    # matrix vs ndarray
							 | 
						||
| 
								 | 
							
								    a = np.matrix([[1, 2], [3, 4]])
							 | 
						||
| 
								 | 
							
								    b = np.arange(4).reshape(2, 2).T
							 | 
						||
| 
								 | 
							
								    i = np.nditer([a, b, None], [],
							 | 
						||
| 
								 | 
							
								                  [['readonly'], ['readonly'], ['writeonly', 'allocate']])
							 | 
						||
| 
								 | 
							
								    assert_(type(i.operands[2]) is np.matrix)
							 | 
						||
| 
								 | 
							
								    assert_(type(i.operands[2]) is not np.ndarray)
							 | 
						||
| 
								 | 
							
								    assert_equal(i.operands[2].shape, (2, 2))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    # matrix always wants things to be 2D
							 | 
						||
| 
								 | 
							
								    b = np.arange(4).reshape(1, 2, 2)
							 | 
						||
| 
								 | 
							
								    assert_raises(RuntimeError, np.nditer, [a, b, None], [],
							 | 
						||
| 
								 | 
							
								                  [['readonly'], ['readonly'], ['writeonly', 'allocate']])
							 | 
						||
| 
								 | 
							
								    # but if subtypes are disabled, the result can still work
							 | 
						||
| 
								 | 
							
								    i = np.nditer([a, b, None], [],
							 | 
						||
| 
								 | 
							
								                  [['readonly'], ['readonly'],
							 | 
						||
| 
								 | 
							
								                   ['writeonly', 'allocate', 'no_subtype']])
							 | 
						||
| 
								 | 
							
								    assert_(type(i.operands[2]) is np.ndarray)
							 | 
						||
| 
								 | 
							
								    assert_(type(i.operands[2]) is not np.matrix)
							 | 
						||
| 
								 | 
							
								    assert_equal(i.operands[2].shape, (1, 2, 2))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def like_function():
							 | 
						||
| 
								 | 
							
								    # 2018-04-29: moved here from core.tests.test_numeric
							 | 
						||
| 
								 | 
							
								    a = np.matrix([[1, 2], [3, 4]])
							 | 
						||
| 
								 | 
							
								    for like_function in np.zeros_like, np.ones_like, np.empty_like:
							 | 
						||
| 
								 | 
							
								        b = like_function(a)
							 | 
						||
| 
								 | 
							
								        assert_(type(b) is np.matrix)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        c = like_function(a, subok=False)
							 | 
						||
| 
								 | 
							
								        assert_(type(c) is not np.matrix)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def test_array_astype():
							 | 
						||
| 
								 | 
							
								    # 2018-04-29: copied here from core.tests.test_api
							 | 
						||
| 
								 | 
							
								    # subok=True passes through a matrix
							 | 
						||
| 
								 | 
							
								    a = np.matrix([[0, 1, 2], [3, 4, 5]], dtype='f4')
							 | 
						||
| 
								 | 
							
								    b = a.astype('f4', subok=True, copy=False)
							 | 
						||
| 
								 | 
							
								    assert_(a is b)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    # subok=True is default, and creates a subtype on a cast
							 | 
						||
| 
								 | 
							
								    b = a.astype('i4', copy=False)
							 | 
						||
| 
								 | 
							
								    assert_equal(a, b)
							 | 
						||
| 
								 | 
							
								    assert_equal(type(b), np.matrix)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    # subok=False never returns a matrix
							 | 
						||
| 
								 | 
							
								    b = a.astype('f4', subok=False, copy=False)
							 | 
						||
| 
								 | 
							
								    assert_equal(a, b)
							 | 
						||
| 
								 | 
							
								    assert_(not (a is b))
							 | 
						||
| 
								 | 
							
								    assert_(type(b) is not np.matrix)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def test_stack():
							 | 
						||
| 
								 | 
							
								    # 2018-04-29: copied here from core.tests.test_shape_base
							 | 
						||
| 
								 | 
							
								    # check np.matrix cannot be stacked
							 | 
						||
| 
								 | 
							
								    m = np.matrix([[1, 2], [3, 4]])
							 | 
						||
| 
								 | 
							
								    assert_raises_regex(ValueError, 'shape too large to be a matrix',
							 | 
						||
| 
								 | 
							
								                        np.stack, [m, m])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def test_object_scalar_multiply():
							 | 
						||
| 
								 | 
							
								    # Tickets #2469 and #4482
							 | 
						||
| 
								 | 
							
								    # 2018-04-29: moved here from core.tests.test_ufunc
							 | 
						||
| 
								 | 
							
								    arr = np.matrix([1, 2], dtype=object)
							 | 
						||
| 
								 | 
							
								    desired = np.matrix([[3, 6]], dtype=object)
							 | 
						||
| 
								 | 
							
								    assert_equal(np.multiply(arr, 3), desired)
							 | 
						||
| 
								 | 
							
								    assert_equal(np.multiply(3, arr), desired)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def test_nanfunctions_matrices():
							 | 
						||
| 
								 | 
							
								    # Check that it works and that type and
							 | 
						||
| 
								 | 
							
								    # shape are preserved
							 | 
						||
| 
								 | 
							
								    # 2018-04-29: moved here from core.tests.test_nanfunctions
							 | 
						||
| 
								 | 
							
								    mat = np.matrix(np.eye(3))
							 | 
						||
| 
								 | 
							
								    for f in [np.nanmin, np.nanmax]:
							 | 
						||
| 
								 | 
							
								        res = f(mat, axis=0)
							 | 
						||
| 
								 | 
							
								        assert_(isinstance(res, np.matrix))
							 | 
						||
| 
								 | 
							
								        assert_(res.shape == (1, 3))
							 | 
						||
| 
								 | 
							
								        res = f(mat, axis=1)
							 | 
						||
| 
								 | 
							
								        assert_(isinstance(res, np.matrix))
							 | 
						||
| 
								 | 
							
								        assert_(res.shape == (3, 1))
							 | 
						||
| 
								 | 
							
								        res = f(mat)
							 | 
						||
| 
								 | 
							
								        assert_(np.isscalar(res))
							 | 
						||
| 
								 | 
							
								    # check that rows of nan are dealt with for subclasses (#4628)
							 | 
						||
| 
								 | 
							
								    mat[1] = np.nan
							 | 
						||
| 
								 | 
							
								    for f in [np.nanmin, np.nanmax]:
							 | 
						||
| 
								 | 
							
								        with warnings.catch_warnings(record=True) as w:
							 | 
						||
| 
								 | 
							
								            warnings.simplefilter('always')
							 | 
						||
| 
								 | 
							
								            res = f(mat, axis=0)
							 | 
						||
| 
								 | 
							
								            assert_(isinstance(res, np.matrix))
							 | 
						||
| 
								 | 
							
								            assert_(not np.any(np.isnan(res)))
							 | 
						||
| 
								 | 
							
								            assert_(len(w) == 0)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        with warnings.catch_warnings(record=True) as w:
							 | 
						||
| 
								 | 
							
								            warnings.simplefilter('always')
							 | 
						||
| 
								 | 
							
								            res = f(mat, axis=1)
							 | 
						||
| 
								 | 
							
								            assert_(isinstance(res, np.matrix))
							 | 
						||
| 
								 | 
							
								            assert_(np.isnan(res[1, 0]) and not np.isnan(res[0, 0])
							 | 
						||
| 
								 | 
							
								                    and not np.isnan(res[2, 0]))
							 | 
						||
| 
								 | 
							
								            assert_(len(w) == 1, 'no warning raised')
							 | 
						||
| 
								 | 
							
								            assert_(issubclass(w[0].category, RuntimeWarning))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        with warnings.catch_warnings(record=True) as w:
							 | 
						||
| 
								 | 
							
								            warnings.simplefilter('always')
							 | 
						||
| 
								 | 
							
								            res = f(mat)
							 | 
						||
| 
								 | 
							
								            assert_(np.isscalar(res))
							 | 
						||
| 
								 | 
							
								            assert_(res != np.nan)
							 | 
						||
| 
								 | 
							
								            assert_(len(w) == 0)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def test_nanfunctions_matrices_general():
							 | 
						||
| 
								 | 
							
								    # Check that it works and that type and
							 | 
						||
| 
								 | 
							
								    # shape are preserved
							 | 
						||
| 
								 | 
							
								    # 2018-04-29: moved here from core.tests.test_nanfunctions
							 | 
						||
| 
								 | 
							
								    mat = np.matrix(np.eye(3))
							 | 
						||
| 
								 | 
							
								    for f in (np.nanargmin, np.nanargmax, np.nansum, np.nanprod,
							 | 
						||
| 
								 | 
							
								              np.nanmean, np.nanvar, np.nanstd):
							 | 
						||
| 
								 | 
							
								        res = f(mat, axis=0)
							 | 
						||
| 
								 | 
							
								        assert_(isinstance(res, np.matrix))
							 | 
						||
| 
								 | 
							
								        assert_(res.shape == (1, 3))
							 | 
						||
| 
								 | 
							
								        res = f(mat, axis=1)
							 | 
						||
| 
								 | 
							
								        assert_(isinstance(res, np.matrix))
							 | 
						||
| 
								 | 
							
								        assert_(res.shape == (3, 1))
							 | 
						||
| 
								 | 
							
								        res = f(mat)
							 | 
						||
| 
								 | 
							
								        assert_(np.isscalar(res))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    for f in np.nancumsum, np.nancumprod:
							 | 
						||
| 
								 | 
							
								        res = f(mat, axis=0)
							 | 
						||
| 
								 | 
							
								        assert_(isinstance(res, np.matrix))
							 | 
						||
| 
								 | 
							
								        assert_(res.shape == (3, 3))
							 | 
						||
| 
								 | 
							
								        res = f(mat, axis=1)
							 | 
						||
| 
								 | 
							
								        assert_(isinstance(res, np.matrix))
							 | 
						||
| 
								 | 
							
								        assert_(res.shape == (3, 3))
							 | 
						||
| 
								 | 
							
								        res = f(mat)
							 | 
						||
| 
								 | 
							
								        assert_(isinstance(res, np.matrix))
							 | 
						||
| 
								 | 
							
								        assert_(res.shape == (1, 3*3))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def test_average_matrix():
							 | 
						||
| 
								 | 
							
								    # 2018-04-29: moved here from core.tests.test_function_base.
							 | 
						||
| 
								 | 
							
								    y = np.matrix(np.random.rand(5, 5))
							 | 
						||
| 
								 | 
							
								    assert_array_equal(y.mean(0), np.average(y, 0))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    a = np.matrix([[1, 2], [3, 4]])
							 | 
						||
| 
								 | 
							
								    w = np.matrix([[1, 2], [3, 4]])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    r = np.average(a, axis=0, weights=w)
							 | 
						||
| 
								 | 
							
								    assert_equal(type(r), np.matrix)
							 | 
						||
| 
								 | 
							
								    assert_equal(r, [[2.5, 10.0/3]])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def test_trapz_matrix():
							 | 
						||
| 
								 | 
							
								    # Test to make sure matrices give the same answer as ndarrays
							 | 
						||
| 
								 | 
							
								    # 2018-04-29: moved here from core.tests.test_function_base.
							 | 
						||
| 
								 | 
							
								    x = np.linspace(0, 5)
							 | 
						||
| 
								 | 
							
								    y = x * x
							 | 
						||
| 
								 | 
							
								    r = np.trapz(y, x)
							 | 
						||
| 
								 | 
							
								    mx = np.matrix(x)
							 | 
						||
| 
								 | 
							
								    my = np.matrix(y)
							 | 
						||
| 
								 | 
							
								    mr = np.trapz(my, mx)
							 | 
						||
| 
								 | 
							
								    assert_almost_equal(mr, r)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def test_ediff1d_matrix():
							 | 
						||
| 
								 | 
							
								    # 2018-04-29: moved here from core.tests.test_arraysetops.
							 | 
						||
| 
								 | 
							
								    assert(isinstance(np.ediff1d(np.matrix(1)), np.matrix))
							 | 
						||
| 
								 | 
							
								    assert(isinstance(np.ediff1d(np.matrix(1), to_begin=1), np.matrix))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def test_apply_along_axis_matrix():
							 | 
						||
| 
								 | 
							
								    # this test is particularly malicious because matrix
							 | 
						||
| 
								 | 
							
								    # refuses to become 1d
							 | 
						||
| 
								 | 
							
								    # 2018-04-29: moved here from core.tests.test_shape_base.
							 | 
						||
| 
								 | 
							
								    def double(row):
							 | 
						||
| 
								 | 
							
								        return row * 2
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    m = np.matrix([[0, 1], [2, 3]])
							 | 
						||
| 
								 | 
							
								    expected = np.matrix([[0, 2], [4, 6]])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    result = np.apply_along_axis(double, 0, m)
							 | 
						||
| 
								 | 
							
								    assert_(isinstance(result, np.matrix))
							 | 
						||
| 
								 | 
							
								    assert_array_equal(result, expected)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    result = np.apply_along_axis(double, 1, m)
							 | 
						||
| 
								 | 
							
								    assert_(isinstance(result, np.matrix))
							 | 
						||
| 
								 | 
							
								    assert_array_equal(result, expected)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def test_kron_matrix():
							 | 
						||
| 
								 | 
							
								    # 2018-04-29: moved here from core.tests.test_shape_base.
							 | 
						||
| 
								 | 
							
								    a = np.ones([2, 2])
							 | 
						||
| 
								 | 
							
								    m = np.asmatrix(a)
							 | 
						||
| 
								 | 
							
								    assert_equal(type(np.kron(a, a)), np.ndarray)
							 | 
						||
| 
								 | 
							
								    assert_equal(type(np.kron(m, m)), np.matrix)
							 | 
						||
| 
								 | 
							
								    assert_equal(type(np.kron(a, m)), np.matrix)
							 | 
						||
| 
								 | 
							
								    assert_equal(type(np.kron(m, a)), np.matrix)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class TestConcatenatorMatrix:
							 | 
						||
| 
								 | 
							
								    # 2018-04-29: moved here from core.tests.test_index_tricks.
							 | 
						||
| 
								 | 
							
								    def test_matrix(self):
							 | 
						||
| 
								 | 
							
								        a = [1, 2]
							 | 
						||
| 
								 | 
							
								        b = [3, 4]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        ab_r = np.r_['r', a, b]
							 | 
						||
| 
								 | 
							
								        ab_c = np.r_['c', a, b]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        assert_equal(type(ab_r), np.matrix)
							 | 
						||
| 
								 | 
							
								        assert_equal(type(ab_c), np.matrix)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        assert_equal(np.array(ab_r), [[1, 2, 3, 4]])
							 | 
						||
| 
								 | 
							
								        assert_equal(np.array(ab_c), [[1], [2], [3], [4]])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        assert_raises(ValueError, lambda: np.r_['rc', a, b])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_matrix_scalar(self):
							 | 
						||
| 
								 | 
							
								        r = np.r_['r', [1, 2], 3]
							 | 
						||
| 
								 | 
							
								        assert_equal(type(r), np.matrix)
							 | 
						||
| 
								 | 
							
								        assert_equal(np.array(r), [[1, 2, 3]])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_matrix_builder(self):
							 | 
						||
| 
								 | 
							
								        a = np.array([1])
							 | 
						||
| 
								 | 
							
								        b = np.array([2])
							 | 
						||
| 
								 | 
							
								        c = np.array([3])
							 | 
						||
| 
								 | 
							
								        d = np.array([4])
							 | 
						||
| 
								 | 
							
								        actual = np.r_['a, b; c, d']
							 | 
						||
| 
								 | 
							
								        expected = np.bmat([[a, b], [c, d]])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        assert_equal(actual, expected)
							 | 
						||
| 
								 | 
							
								        assert_equal(type(actual), type(expected))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def test_array_equal_error_message_matrix():
							 | 
						||
| 
								 | 
							
								    # 2018-04-29: moved here from testing.tests.test_utils.
							 | 
						||
| 
								 | 
							
								    with pytest.raises(AssertionError) as exc_info:
							 | 
						||
| 
								 | 
							
								        assert_equal(np.array([1, 2]), np.matrix([1, 2]))
							 | 
						||
| 
								 | 
							
								    msg = str(exc_info.value)
							 | 
						||
| 
								 | 
							
								    msg_reference = textwrap.dedent("""\
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Arrays are not equal
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    (shapes (2,), (1, 2) mismatch)
							 | 
						||
| 
								 | 
							
								     x: array([1, 2])
							 | 
						||
| 
								 | 
							
								     y: matrix([[1, 2]])""")
							 | 
						||
| 
								 | 
							
								    assert_equal(msg, msg_reference)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def test_array_almost_equal_matrix():
							 | 
						||
| 
								 | 
							
								    # Matrix slicing keeps things 2-D, while array does not necessarily.
							 | 
						||
| 
								 | 
							
								    # See gh-8452.
							 | 
						||
| 
								 | 
							
								    # 2018-04-29: moved here from testing.tests.test_utils.
							 | 
						||
| 
								 | 
							
								    m1 = np.matrix([[1., 2.]])
							 | 
						||
| 
								 | 
							
								    m2 = np.matrix([[1., np.nan]])
							 | 
						||
| 
								 | 
							
								    m3 = np.matrix([[1., -np.inf]])
							 | 
						||
| 
								 | 
							
								    m4 = np.matrix([[np.nan, np.inf]])
							 | 
						||
| 
								 | 
							
								    m5 = np.matrix([[1., 2.], [np.nan, np.inf]])
							 | 
						||
| 
								 | 
							
								    for assert_func in assert_array_almost_equal, assert_almost_equal:
							 | 
						||
| 
								 | 
							
								        for m in m1, m2, m3, m4, m5:
							 | 
						||
| 
								 | 
							
								            assert_func(m, m)
							 | 
						||
| 
								 | 
							
								            a = np.array(m)
							 | 
						||
| 
								 | 
							
								            assert_func(a, m)
							 | 
						||
| 
								 | 
							
								            assert_func(m, a)
							 |