You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					1646 lines
				
				49 KiB
			
		
		
			
		
	
	
					1646 lines
				
				49 KiB
			| 
								 
											3 years ago
										 
									 | 
							
								"""
							 | 
						||
| 
								 | 
							
								==================================================
							 | 
						||
| 
								 | 
							
								Laguerre Series (:mod:`numpy.polynomial.laguerre`)
							 | 
						||
| 
								 | 
							
								==================================================
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								This module provides a number of objects (mostly functions) useful for
							 | 
						||
| 
								 | 
							
								dealing with Laguerre series, including a `Laguerre` class that
							 | 
						||
| 
								 | 
							
								encapsulates the usual arithmetic operations.  (General information
							 | 
						||
| 
								 | 
							
								on how this module represents and works with such polynomials is in the
							 | 
						||
| 
								 | 
							
								docstring for its "parent" sub-package, `numpy.polynomial`).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								Classes
							 | 
						||
| 
								 | 
							
								-------
							 | 
						||
| 
								 | 
							
								.. autosummary::
							 | 
						||
| 
								 | 
							
								   :toctree: generated/
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   Laguerre
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								Constants
							 | 
						||
| 
								 | 
							
								---------
							 | 
						||
| 
								 | 
							
								.. autosummary::
							 | 
						||
| 
								 | 
							
								   :toctree: generated/
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   lagdomain
							 | 
						||
| 
								 | 
							
								   lagzero
							 | 
						||
| 
								 | 
							
								   lagone
							 | 
						||
| 
								 | 
							
								   lagx
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								Arithmetic
							 | 
						||
| 
								 | 
							
								----------
							 | 
						||
| 
								 | 
							
								.. autosummary::
							 | 
						||
| 
								 | 
							
								   :toctree: generated/
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   lagadd
							 | 
						||
| 
								 | 
							
								   lagsub
							 | 
						||
| 
								 | 
							
								   lagmulx
							 | 
						||
| 
								 | 
							
								   lagmul
							 | 
						||
| 
								 | 
							
								   lagdiv
							 | 
						||
| 
								 | 
							
								   lagpow
							 | 
						||
| 
								 | 
							
								   lagval
							 | 
						||
| 
								 | 
							
								   lagval2d
							 | 
						||
| 
								 | 
							
								   lagval3d
							 | 
						||
| 
								 | 
							
								   laggrid2d
							 | 
						||
| 
								 | 
							
								   laggrid3d
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								Calculus
							 | 
						||
| 
								 | 
							
								--------
							 | 
						||
| 
								 | 
							
								.. autosummary::
							 | 
						||
| 
								 | 
							
								   :toctree: generated/
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   lagder
							 | 
						||
| 
								 | 
							
								   lagint
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								Misc Functions
							 | 
						||
| 
								 | 
							
								--------------
							 | 
						||
| 
								 | 
							
								.. autosummary::
							 | 
						||
| 
								 | 
							
								   :toctree: generated/
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   lagfromroots
							 | 
						||
| 
								 | 
							
								   lagroots
							 | 
						||
| 
								 | 
							
								   lagvander
							 | 
						||
| 
								 | 
							
								   lagvander2d
							 | 
						||
| 
								 | 
							
								   lagvander3d
							 | 
						||
| 
								 | 
							
								   laggauss
							 | 
						||
| 
								 | 
							
								   lagweight
							 | 
						||
| 
								 | 
							
								   lagcompanion
							 | 
						||
| 
								 | 
							
								   lagfit
							 | 
						||
| 
								 | 
							
								   lagtrim
							 | 
						||
| 
								 | 
							
								   lagline
							 | 
						||
| 
								 | 
							
								   lag2poly
							 | 
						||
| 
								 | 
							
								   poly2lag
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								See also
							 | 
						||
| 
								 | 
							
								--------
							 | 
						||
| 
								 | 
							
								`numpy.polynomial`
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								"""
							 | 
						||
| 
								 | 
							
								import numpy as np
							 | 
						||
| 
								 | 
							
								import numpy.linalg as la
							 | 
						||
| 
								 | 
							
								from numpy.core.multiarray import normalize_axis_index
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								from . import polyutils as pu
							 | 
						||
| 
								 | 
							
								from ._polybase import ABCPolyBase
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								__all__ = [
							 | 
						||
| 
								 | 
							
								    'lagzero', 'lagone', 'lagx', 'lagdomain', 'lagline', 'lagadd',
							 | 
						||
| 
								 | 
							
								    'lagsub', 'lagmulx', 'lagmul', 'lagdiv', 'lagpow', 'lagval', 'lagder',
							 | 
						||
| 
								 | 
							
								    'lagint', 'lag2poly', 'poly2lag', 'lagfromroots', 'lagvander',
							 | 
						||
| 
								 | 
							
								    'lagfit', 'lagtrim', 'lagroots', 'Laguerre', 'lagval2d', 'lagval3d',
							 | 
						||
| 
								 | 
							
								    'laggrid2d', 'laggrid3d', 'lagvander2d', 'lagvander3d', 'lagcompanion',
							 | 
						||
| 
								 | 
							
								    'laggauss', 'lagweight']
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								lagtrim = pu.trimcoef
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def poly2lag(pol):
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    poly2lag(pol)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Convert a polynomial to a Laguerre series.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Convert an array representing the coefficients of a polynomial (relative
							 | 
						||
| 
								 | 
							
								    to the "standard" basis) ordered from lowest degree to highest, to an
							 | 
						||
| 
								 | 
							
								    array of the coefficients of the equivalent Laguerre series, ordered
							 | 
						||
| 
								 | 
							
								    from lowest to highest degree.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Parameters
							 | 
						||
| 
								 | 
							
								    ----------
							 | 
						||
| 
								 | 
							
								    pol : array_like
							 | 
						||
| 
								 | 
							
								        1-D array containing the polynomial coefficients
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Returns
							 | 
						||
| 
								 | 
							
								    -------
							 | 
						||
| 
								 | 
							
								    c : ndarray
							 | 
						||
| 
								 | 
							
								        1-D array containing the coefficients of the equivalent Laguerre
							 | 
						||
| 
								 | 
							
								        series.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    See Also
							 | 
						||
| 
								 | 
							
								    --------
							 | 
						||
| 
								 | 
							
								    lag2poly
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Notes
							 | 
						||
| 
								 | 
							
								    -----
							 | 
						||
| 
								 | 
							
								    The easy way to do conversions between polynomial basis sets
							 | 
						||
| 
								 | 
							
								    is to use the convert method of a class instance.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Examples
							 | 
						||
| 
								 | 
							
								    --------
							 | 
						||
| 
								 | 
							
								    >>> from numpy.polynomial.laguerre import poly2lag
							 | 
						||
| 
								 | 
							
								    >>> poly2lag(np.arange(4))
							 | 
						||
| 
								 | 
							
								    array([ 23., -63.,  58., -18.])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    [pol] = pu.as_series([pol])
							 | 
						||
| 
								 | 
							
								    res = 0
							 | 
						||
| 
								 | 
							
								    for p in pol[::-1]:
							 | 
						||
| 
								 | 
							
								        res = lagadd(lagmulx(res), p)
							 | 
						||
| 
								 | 
							
								    return res
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def lag2poly(c):
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    Convert a Laguerre series to a polynomial.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Convert an array representing the coefficients of a Laguerre series,
							 | 
						||
| 
								 | 
							
								    ordered from lowest degree to highest, to an array of the coefficients
							 | 
						||
| 
								 | 
							
								    of the equivalent polynomial (relative to the "standard" basis) ordered
							 | 
						||
| 
								 | 
							
								    from lowest to highest degree.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Parameters
							 | 
						||
| 
								 | 
							
								    ----------
							 | 
						||
| 
								 | 
							
								    c : array_like
							 | 
						||
| 
								 | 
							
								        1-D array containing the Laguerre series coefficients, ordered
							 | 
						||
| 
								 | 
							
								        from lowest order term to highest.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Returns
							 | 
						||
| 
								 | 
							
								    -------
							 | 
						||
| 
								 | 
							
								    pol : ndarray
							 | 
						||
| 
								 | 
							
								        1-D array containing the coefficients of the equivalent polynomial
							 | 
						||
| 
								 | 
							
								        (relative to the "standard" basis) ordered from lowest order term
							 | 
						||
| 
								 | 
							
								        to highest.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    See Also
							 | 
						||
| 
								 | 
							
								    --------
							 | 
						||
| 
								 | 
							
								    poly2lag
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Notes
							 | 
						||
| 
								 | 
							
								    -----
							 | 
						||
| 
								 | 
							
								    The easy way to do conversions between polynomial basis sets
							 | 
						||
| 
								 | 
							
								    is to use the convert method of a class instance.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Examples
							 | 
						||
| 
								 | 
							
								    --------
							 | 
						||
| 
								 | 
							
								    >>> from numpy.polynomial.laguerre import lag2poly
							 | 
						||
| 
								 | 
							
								    >>> lag2poly([ 23., -63.,  58., -18.])
							 | 
						||
| 
								 | 
							
								    array([0., 1., 2., 3.])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    from .polynomial import polyadd, polysub, polymulx
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    [c] = pu.as_series([c])
							 | 
						||
| 
								 | 
							
								    n = len(c)
							 | 
						||
| 
								 | 
							
								    if n == 1:
							 | 
						||
| 
								 | 
							
								        return c
							 | 
						||
| 
								 | 
							
								    else:
							 | 
						||
| 
								 | 
							
								        c0 = c[-2]
							 | 
						||
| 
								 | 
							
								        c1 = c[-1]
							 | 
						||
| 
								 | 
							
								        # i is the current degree of c1
							 | 
						||
| 
								 | 
							
								        for i in range(n - 1, 1, -1):
							 | 
						||
| 
								 | 
							
								            tmp = c0
							 | 
						||
| 
								 | 
							
								            c0 = polysub(c[i - 2], (c1*(i - 1))/i)
							 | 
						||
| 
								 | 
							
								            c1 = polyadd(tmp, polysub((2*i - 1)*c1, polymulx(c1))/i)
							 | 
						||
| 
								 | 
							
								        return polyadd(c0, polysub(c1, polymulx(c1)))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#
							 | 
						||
| 
								 | 
							
								# These are constant arrays are of integer type so as to be compatible
							 | 
						||
| 
								 | 
							
								# with the widest range of other types, such as Decimal.
							 | 
						||
| 
								 | 
							
								#
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								# Laguerre
							 | 
						||
| 
								 | 
							
								lagdomain = np.array([0, 1])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								# Laguerre coefficients representing zero.
							 | 
						||
| 
								 | 
							
								lagzero = np.array([0])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								# Laguerre coefficients representing one.
							 | 
						||
| 
								 | 
							
								lagone = np.array([1])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								# Laguerre coefficients representing the identity x.
							 | 
						||
| 
								 | 
							
								lagx = np.array([1, -1])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def lagline(off, scl):
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    Laguerre series whose graph is a straight line.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Parameters
							 | 
						||
| 
								 | 
							
								    ----------
							 | 
						||
| 
								 | 
							
								    off, scl : scalars
							 | 
						||
| 
								 | 
							
								        The specified line is given by ``off + scl*x``.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Returns
							 | 
						||
| 
								 | 
							
								    -------
							 | 
						||
| 
								 | 
							
								    y : ndarray
							 | 
						||
| 
								 | 
							
								        This module's representation of the Laguerre series for
							 | 
						||
| 
								 | 
							
								        ``off + scl*x``.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    See Also
							 | 
						||
| 
								 | 
							
								    --------
							 | 
						||
| 
								 | 
							
								    numpy.polynomial.polynomial.polyline
							 | 
						||
| 
								 | 
							
								    numpy.polynomial.chebyshev.chebline
							 | 
						||
| 
								 | 
							
								    numpy.polynomial.legendre.legline
							 | 
						||
| 
								 | 
							
								    numpy.polynomial.hermite.hermline
							 | 
						||
| 
								 | 
							
								    numpy.polynomial.hermite_e.hermeline
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Examples
							 | 
						||
| 
								 | 
							
								    --------
							 | 
						||
| 
								 | 
							
								    >>> from numpy.polynomial.laguerre import lagline, lagval
							 | 
						||
| 
								 | 
							
								    >>> lagval(0,lagline(3, 2))
							 | 
						||
| 
								 | 
							
								    3.0
							 | 
						||
| 
								 | 
							
								    >>> lagval(1,lagline(3, 2))
							 | 
						||
| 
								 | 
							
								    5.0
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    if scl != 0:
							 | 
						||
| 
								 | 
							
								        return np.array([off + scl, -scl])
							 | 
						||
| 
								 | 
							
								    else:
							 | 
						||
| 
								 | 
							
								        return np.array([off])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def lagfromroots(roots):
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    Generate a Laguerre series with given roots.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    The function returns the coefficients of the polynomial
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    .. math:: p(x) = (x - r_0) * (x - r_1) * ... * (x - r_n),
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    in Laguerre form, where the `r_n` are the roots specified in `roots`.
							 | 
						||
| 
								 | 
							
								    If a zero has multiplicity n, then it must appear in `roots` n times.
							 | 
						||
| 
								 | 
							
								    For instance, if 2 is a root of multiplicity three and 3 is a root of
							 | 
						||
| 
								 | 
							
								    multiplicity 2, then `roots` looks something like [2, 2, 2, 3, 3]. The
							 | 
						||
| 
								 | 
							
								    roots can appear in any order.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    If the returned coefficients are `c`, then
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    .. math:: p(x) = c_0 + c_1 * L_1(x) + ... +  c_n * L_n(x)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    The coefficient of the last term is not generally 1 for monic
							 | 
						||
| 
								 | 
							
								    polynomials in Laguerre form.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Parameters
							 | 
						||
| 
								 | 
							
								    ----------
							 | 
						||
| 
								 | 
							
								    roots : array_like
							 | 
						||
| 
								 | 
							
								        Sequence containing the roots.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Returns
							 | 
						||
| 
								 | 
							
								    -------
							 | 
						||
| 
								 | 
							
								    out : ndarray
							 | 
						||
| 
								 | 
							
								        1-D array of coefficients.  If all roots are real then `out` is a
							 | 
						||
| 
								 | 
							
								        real array, if some of the roots are complex, then `out` is complex
							 | 
						||
| 
								 | 
							
								        even if all the coefficients in the result are real (see Examples
							 | 
						||
| 
								 | 
							
								        below).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    See Also
							 | 
						||
| 
								 | 
							
								    --------
							 | 
						||
| 
								 | 
							
								    numpy.polynomial.polynomial.polyfromroots
							 | 
						||
| 
								 | 
							
								    numpy.polynomial.legendre.legfromroots
							 | 
						||
| 
								 | 
							
								    numpy.polynomial.chebyshev.chebfromroots
							 | 
						||
| 
								 | 
							
								    numpy.polynomial.hermite.hermfromroots
							 | 
						||
| 
								 | 
							
								    numpy.polynomial.hermite_e.hermefromroots
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Examples
							 | 
						||
| 
								 | 
							
								    --------
							 | 
						||
| 
								 | 
							
								    >>> from numpy.polynomial.laguerre import lagfromroots, lagval
							 | 
						||
| 
								 | 
							
								    >>> coef = lagfromroots((-1, 0, 1))
							 | 
						||
| 
								 | 
							
								    >>> lagval((-1, 0, 1), coef)
							 | 
						||
| 
								 | 
							
								    array([0.,  0.,  0.])
							 | 
						||
| 
								 | 
							
								    >>> coef = lagfromroots((-1j, 1j))
							 | 
						||
| 
								 | 
							
								    >>> lagval((-1j, 1j), coef)
							 | 
						||
| 
								 | 
							
								    array([0.+0.j, 0.+0.j])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    return pu._fromroots(lagline, lagmul, roots)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def lagadd(c1, c2):
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    Add one Laguerre series to another.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Returns the sum of two Laguerre series `c1` + `c2`.  The arguments
							 | 
						||
| 
								 | 
							
								    are sequences of coefficients ordered from lowest order term to
							 | 
						||
| 
								 | 
							
								    highest, i.e., [1,2,3] represents the series ``P_0 + 2*P_1 + 3*P_2``.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Parameters
							 | 
						||
| 
								 | 
							
								    ----------
							 | 
						||
| 
								 | 
							
								    c1, c2 : array_like
							 | 
						||
| 
								 | 
							
								        1-D arrays of Laguerre series coefficients ordered from low to
							 | 
						||
| 
								 | 
							
								        high.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Returns
							 | 
						||
| 
								 | 
							
								    -------
							 | 
						||
| 
								 | 
							
								    out : ndarray
							 | 
						||
| 
								 | 
							
								        Array representing the Laguerre series of their sum.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    See Also
							 | 
						||
| 
								 | 
							
								    --------
							 | 
						||
| 
								 | 
							
								    lagsub, lagmulx, lagmul, lagdiv, lagpow
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Notes
							 | 
						||
| 
								 | 
							
								    -----
							 | 
						||
| 
								 | 
							
								    Unlike multiplication, division, etc., the sum of two Laguerre series
							 | 
						||
| 
								 | 
							
								    is a Laguerre series (without having to "reproject" the result onto
							 | 
						||
| 
								 | 
							
								    the basis set) so addition, just like that of "standard" polynomials,
							 | 
						||
| 
								 | 
							
								    is simply "component-wise."
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Examples
							 | 
						||
| 
								 | 
							
								    --------
							 | 
						||
| 
								 | 
							
								    >>> from numpy.polynomial.laguerre import lagadd
							 | 
						||
| 
								 | 
							
								    >>> lagadd([1, 2, 3], [1, 2, 3, 4])
							 | 
						||
| 
								 | 
							
								    array([2.,  4.,  6.,  4.])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    return pu._add(c1, c2)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def lagsub(c1, c2):
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    Subtract one Laguerre series from another.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Returns the difference of two Laguerre series `c1` - `c2`.  The
							 | 
						||
| 
								 | 
							
								    sequences of coefficients are from lowest order term to highest, i.e.,
							 | 
						||
| 
								 | 
							
								    [1,2,3] represents the series ``P_0 + 2*P_1 + 3*P_2``.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Parameters
							 | 
						||
| 
								 | 
							
								    ----------
							 | 
						||
| 
								 | 
							
								    c1, c2 : array_like
							 | 
						||
| 
								 | 
							
								        1-D arrays of Laguerre series coefficients ordered from low to
							 | 
						||
| 
								 | 
							
								        high.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Returns
							 | 
						||
| 
								 | 
							
								    -------
							 | 
						||
| 
								 | 
							
								    out : ndarray
							 | 
						||
| 
								 | 
							
								        Of Laguerre series coefficients representing their difference.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    See Also
							 | 
						||
| 
								 | 
							
								    --------
							 | 
						||
| 
								 | 
							
								    lagadd, lagmulx, lagmul, lagdiv, lagpow
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Notes
							 | 
						||
| 
								 | 
							
								    -----
							 | 
						||
| 
								 | 
							
								    Unlike multiplication, division, etc., the difference of two Laguerre
							 | 
						||
| 
								 | 
							
								    series is a Laguerre series (without having to "reproject" the result
							 | 
						||
| 
								 | 
							
								    onto the basis set) so subtraction, just like that of "standard"
							 | 
						||
| 
								 | 
							
								    polynomials, is simply "component-wise."
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Examples
							 | 
						||
| 
								 | 
							
								    --------
							 | 
						||
| 
								 | 
							
								    >>> from numpy.polynomial.laguerre import lagsub
							 | 
						||
| 
								 | 
							
								    >>> lagsub([1, 2, 3, 4], [1, 2, 3])
							 | 
						||
| 
								 | 
							
								    array([0.,  0.,  0.,  4.])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    return pu._sub(c1, c2)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def lagmulx(c):
							 | 
						||
| 
								 | 
							
								    """Multiply a Laguerre series by x.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Multiply the Laguerre series `c` by x, where x is the independent
							 | 
						||
| 
								 | 
							
								    variable.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Parameters
							 | 
						||
| 
								 | 
							
								    ----------
							 | 
						||
| 
								 | 
							
								    c : array_like
							 | 
						||
| 
								 | 
							
								        1-D array of Laguerre series coefficients ordered from low to
							 | 
						||
| 
								 | 
							
								        high.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Returns
							 | 
						||
| 
								 | 
							
								    -------
							 | 
						||
| 
								 | 
							
								    out : ndarray
							 | 
						||
| 
								 | 
							
								        Array representing the result of the multiplication.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    See Also
							 | 
						||
| 
								 | 
							
								    --------
							 | 
						||
| 
								 | 
							
								    lagadd, lagsub, lagmul, lagdiv, lagpow
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Notes
							 | 
						||
| 
								 | 
							
								    -----
							 | 
						||
| 
								 | 
							
								    The multiplication uses the recursion relationship for Laguerre
							 | 
						||
| 
								 | 
							
								    polynomials in the form
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    .. math::
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        xP_i(x) = (-(i + 1)*P_{i + 1}(x) + (2i + 1)P_{i}(x) - iP_{i - 1}(x))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Examples
							 | 
						||
| 
								 | 
							
								    --------
							 | 
						||
| 
								 | 
							
								    >>> from numpy.polynomial.laguerre import lagmulx
							 | 
						||
| 
								 | 
							
								    >>> lagmulx([1, 2, 3])
							 | 
						||
| 
								 | 
							
								    array([-1.,  -1.,  11.,  -9.])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    # c is a trimmed copy
							 | 
						||
| 
								 | 
							
								    [c] = pu.as_series([c])
							 | 
						||
| 
								 | 
							
								    # The zero series needs special treatment
							 | 
						||
| 
								 | 
							
								    if len(c) == 1 and c[0] == 0:
							 | 
						||
| 
								 | 
							
								        return c
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    prd = np.empty(len(c) + 1, dtype=c.dtype)
							 | 
						||
| 
								 | 
							
								    prd[0] = c[0]
							 | 
						||
| 
								 | 
							
								    prd[1] = -c[0]
							 | 
						||
| 
								 | 
							
								    for i in range(1, len(c)):
							 | 
						||
| 
								 | 
							
								        prd[i + 1] = -c[i]*(i + 1)
							 | 
						||
| 
								 | 
							
								        prd[i] += c[i]*(2*i + 1)
							 | 
						||
| 
								 | 
							
								        prd[i - 1] -= c[i]*i
							 | 
						||
| 
								 | 
							
								    return prd
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def lagmul(c1, c2):
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    Multiply one Laguerre series by another.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Returns the product of two Laguerre series `c1` * `c2`.  The arguments
							 | 
						||
| 
								 | 
							
								    are sequences of coefficients, from lowest order "term" to highest,
							 | 
						||
| 
								 | 
							
								    e.g., [1,2,3] represents the series ``P_0 + 2*P_1 + 3*P_2``.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Parameters
							 | 
						||
| 
								 | 
							
								    ----------
							 | 
						||
| 
								 | 
							
								    c1, c2 : array_like
							 | 
						||
| 
								 | 
							
								        1-D arrays of Laguerre series coefficients ordered from low to
							 | 
						||
| 
								 | 
							
								        high.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Returns
							 | 
						||
| 
								 | 
							
								    -------
							 | 
						||
| 
								 | 
							
								    out : ndarray
							 | 
						||
| 
								 | 
							
								        Of Laguerre series coefficients representing their product.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    See Also
							 | 
						||
| 
								 | 
							
								    --------
							 | 
						||
| 
								 | 
							
								    lagadd, lagsub, lagmulx, lagdiv, lagpow
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Notes
							 | 
						||
| 
								 | 
							
								    -----
							 | 
						||
| 
								 | 
							
								    In general, the (polynomial) product of two C-series results in terms
							 | 
						||
| 
								 | 
							
								    that are not in the Laguerre polynomial basis set.  Thus, to express
							 | 
						||
| 
								 | 
							
								    the product as a Laguerre series, it is necessary to "reproject" the
							 | 
						||
| 
								 | 
							
								    product onto said basis set, which may produce "unintuitive" (but
							 | 
						||
| 
								 | 
							
								    correct) results; see Examples section below.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Examples
							 | 
						||
| 
								 | 
							
								    --------
							 | 
						||
| 
								 | 
							
								    >>> from numpy.polynomial.laguerre import lagmul
							 | 
						||
| 
								 | 
							
								    >>> lagmul([1, 2, 3], [0, 1, 2])
							 | 
						||
| 
								 | 
							
								    array([  8., -13.,  38., -51.,  36.])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    # s1, s2 are trimmed copies
							 | 
						||
| 
								 | 
							
								    [c1, c2] = pu.as_series([c1, c2])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    if len(c1) > len(c2):
							 | 
						||
| 
								 | 
							
								        c = c2
							 | 
						||
| 
								 | 
							
								        xs = c1
							 | 
						||
| 
								 | 
							
								    else:
							 | 
						||
| 
								 | 
							
								        c = c1
							 | 
						||
| 
								 | 
							
								        xs = c2
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    if len(c) == 1:
							 | 
						||
| 
								 | 
							
								        c0 = c[0]*xs
							 | 
						||
| 
								 | 
							
								        c1 = 0
							 | 
						||
| 
								 | 
							
								    elif len(c) == 2:
							 | 
						||
| 
								 | 
							
								        c0 = c[0]*xs
							 | 
						||
| 
								 | 
							
								        c1 = c[1]*xs
							 | 
						||
| 
								 | 
							
								    else:
							 | 
						||
| 
								 | 
							
								        nd = len(c)
							 | 
						||
| 
								 | 
							
								        c0 = c[-2]*xs
							 | 
						||
| 
								 | 
							
								        c1 = c[-1]*xs
							 | 
						||
| 
								 | 
							
								        for i in range(3, len(c) + 1):
							 | 
						||
| 
								 | 
							
								            tmp = c0
							 | 
						||
| 
								 | 
							
								            nd = nd - 1
							 | 
						||
| 
								 | 
							
								            c0 = lagsub(c[-i]*xs, (c1*(nd - 1))/nd)
							 | 
						||
| 
								 | 
							
								            c1 = lagadd(tmp, lagsub((2*nd - 1)*c1, lagmulx(c1))/nd)
							 | 
						||
| 
								 | 
							
								    return lagadd(c0, lagsub(c1, lagmulx(c1)))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def lagdiv(c1, c2):
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    Divide one Laguerre series by another.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Returns the quotient-with-remainder of two Laguerre series
							 | 
						||
| 
								 | 
							
								    `c1` / `c2`.  The arguments are sequences of coefficients from lowest
							 | 
						||
| 
								 | 
							
								    order "term" to highest, e.g., [1,2,3] represents the series
							 | 
						||
| 
								 | 
							
								    ``P_0 + 2*P_1 + 3*P_2``.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Parameters
							 | 
						||
| 
								 | 
							
								    ----------
							 | 
						||
| 
								 | 
							
								    c1, c2 : array_like
							 | 
						||
| 
								 | 
							
								        1-D arrays of Laguerre series coefficients ordered from low to
							 | 
						||
| 
								 | 
							
								        high.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Returns
							 | 
						||
| 
								 | 
							
								    -------
							 | 
						||
| 
								 | 
							
								    [quo, rem] : ndarrays
							 | 
						||
| 
								 | 
							
								        Of Laguerre series coefficients representing the quotient and
							 | 
						||
| 
								 | 
							
								        remainder.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    See Also
							 | 
						||
| 
								 | 
							
								    --------
							 | 
						||
| 
								 | 
							
								    lagadd, lagsub, lagmulx, lagmul, lagpow
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Notes
							 | 
						||
| 
								 | 
							
								    -----
							 | 
						||
| 
								 | 
							
								    In general, the (polynomial) division of one Laguerre series by another
							 | 
						||
| 
								 | 
							
								    results in quotient and remainder terms that are not in the Laguerre
							 | 
						||
| 
								 | 
							
								    polynomial basis set.  Thus, to express these results as a Laguerre
							 | 
						||
| 
								 | 
							
								    series, it is necessary to "reproject" the results onto the Laguerre
							 | 
						||
| 
								 | 
							
								    basis set, which may produce "unintuitive" (but correct) results; see
							 | 
						||
| 
								 | 
							
								    Examples section below.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Examples
							 | 
						||
| 
								 | 
							
								    --------
							 | 
						||
| 
								 | 
							
								    >>> from numpy.polynomial.laguerre import lagdiv
							 | 
						||
| 
								 | 
							
								    >>> lagdiv([  8., -13.,  38., -51.,  36.], [0, 1, 2])
							 | 
						||
| 
								 | 
							
								    (array([1., 2., 3.]), array([0.]))
							 | 
						||
| 
								 | 
							
								    >>> lagdiv([  9., -12.,  38., -51.,  36.], [0, 1, 2])
							 | 
						||
| 
								 | 
							
								    (array([1., 2., 3.]), array([1., 1.]))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    return pu._div(lagmul, c1, c2)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def lagpow(c, pow, maxpower=16):
							 | 
						||
| 
								 | 
							
								    """Raise a Laguerre series to a power.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Returns the Laguerre series `c` raised to the power `pow`. The
							 | 
						||
| 
								 | 
							
								    argument `c` is a sequence of coefficients ordered from low to high.
							 | 
						||
| 
								 | 
							
								    i.e., [1,2,3] is the series  ``P_0 + 2*P_1 + 3*P_2.``
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Parameters
							 | 
						||
| 
								 | 
							
								    ----------
							 | 
						||
| 
								 | 
							
								    c : array_like
							 | 
						||
| 
								 | 
							
								        1-D array of Laguerre series coefficients ordered from low to
							 | 
						||
| 
								 | 
							
								        high.
							 | 
						||
| 
								 | 
							
								    pow : integer
							 | 
						||
| 
								 | 
							
								        Power to which the series will be raised
							 | 
						||
| 
								 | 
							
								    maxpower : integer, optional
							 | 
						||
| 
								 | 
							
								        Maximum power allowed. This is mainly to limit growth of the series
							 | 
						||
| 
								 | 
							
								        to unmanageable size. Default is 16
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Returns
							 | 
						||
| 
								 | 
							
								    -------
							 | 
						||
| 
								 | 
							
								    coef : ndarray
							 | 
						||
| 
								 | 
							
								        Laguerre series of power.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    See Also
							 | 
						||
| 
								 | 
							
								    --------
							 | 
						||
| 
								 | 
							
								    lagadd, lagsub, lagmulx, lagmul, lagdiv
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Examples
							 | 
						||
| 
								 | 
							
								    --------
							 | 
						||
| 
								 | 
							
								    >>> from numpy.polynomial.laguerre import lagpow
							 | 
						||
| 
								 | 
							
								    >>> lagpow([1, 2, 3], 2)
							 | 
						||
| 
								 | 
							
								    array([ 14., -16.,  56., -72.,  54.])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    return pu._pow(lagmul, c, pow, maxpower)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def lagder(c, m=1, scl=1, axis=0):
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    Differentiate a Laguerre series.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Returns the Laguerre series coefficients `c` differentiated `m` times
							 | 
						||
| 
								 | 
							
								    along `axis`.  At each iteration the result is multiplied by `scl` (the
							 | 
						||
| 
								 | 
							
								    scaling factor is for use in a linear change of variable). The argument
							 | 
						||
| 
								 | 
							
								    `c` is an array of coefficients from low to high degree along each
							 | 
						||
| 
								 | 
							
								    axis, e.g., [1,2,3] represents the series ``1*L_0 + 2*L_1 + 3*L_2``
							 | 
						||
| 
								 | 
							
								    while [[1,2],[1,2]] represents ``1*L_0(x)*L_0(y) + 1*L_1(x)*L_0(y) +
							 | 
						||
| 
								 | 
							
								    2*L_0(x)*L_1(y) + 2*L_1(x)*L_1(y)`` if axis=0 is ``x`` and axis=1 is
							 | 
						||
| 
								 | 
							
								    ``y``.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Parameters
							 | 
						||
| 
								 | 
							
								    ----------
							 | 
						||
| 
								 | 
							
								    c : array_like
							 | 
						||
| 
								 | 
							
								        Array of Laguerre series coefficients. If `c` is multidimensional
							 | 
						||
| 
								 | 
							
								        the different axis correspond to different variables with the
							 | 
						||
| 
								 | 
							
								        degree in each axis given by the corresponding index.
							 | 
						||
| 
								 | 
							
								    m : int, optional
							 | 
						||
| 
								 | 
							
								        Number of derivatives taken, must be non-negative. (Default: 1)
							 | 
						||
| 
								 | 
							
								    scl : scalar, optional
							 | 
						||
| 
								 | 
							
								        Each differentiation is multiplied by `scl`.  The end result is
							 | 
						||
| 
								 | 
							
								        multiplication by ``scl**m``.  This is for use in a linear change of
							 | 
						||
| 
								 | 
							
								        variable. (Default: 1)
							 | 
						||
| 
								 | 
							
								    axis : int, optional
							 | 
						||
| 
								 | 
							
								        Axis over which the derivative is taken. (Default: 0).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        .. versionadded:: 1.7.0
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Returns
							 | 
						||
| 
								 | 
							
								    -------
							 | 
						||
| 
								 | 
							
								    der : ndarray
							 | 
						||
| 
								 | 
							
								        Laguerre series of the derivative.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    See Also
							 | 
						||
| 
								 | 
							
								    --------
							 | 
						||
| 
								 | 
							
								    lagint
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Notes
							 | 
						||
| 
								 | 
							
								    -----
							 | 
						||
| 
								 | 
							
								    In general, the result of differentiating a Laguerre series does not
							 | 
						||
| 
								 | 
							
								    resemble the same operation on a power series. Thus the result of this
							 | 
						||
| 
								 | 
							
								    function may be "unintuitive," albeit correct; see Examples section
							 | 
						||
| 
								 | 
							
								    below.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Examples
							 | 
						||
| 
								 | 
							
								    --------
							 | 
						||
| 
								 | 
							
								    >>> from numpy.polynomial.laguerre import lagder
							 | 
						||
| 
								 | 
							
								    >>> lagder([ 1.,  1.,  1., -3.])
							 | 
						||
| 
								 | 
							
								    array([1.,  2.,  3.])
							 | 
						||
| 
								 | 
							
								    >>> lagder([ 1.,  0.,  0., -4.,  3.], m=2)
							 | 
						||
| 
								 | 
							
								    array([1.,  2.,  3.])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    c = np.array(c, ndmin=1, copy=True)
							 | 
						||
| 
								 | 
							
								    if c.dtype.char in '?bBhHiIlLqQpP':
							 | 
						||
| 
								 | 
							
								        c = c.astype(np.double)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    cnt = pu._deprecate_as_int(m, "the order of derivation")
							 | 
						||
| 
								 | 
							
								    iaxis = pu._deprecate_as_int(axis, "the axis")
							 | 
						||
| 
								 | 
							
								    if cnt < 0:
							 | 
						||
| 
								 | 
							
								        raise ValueError("The order of derivation must be non-negative")
							 | 
						||
| 
								 | 
							
								    iaxis = normalize_axis_index(iaxis, c.ndim)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    if cnt == 0:
							 | 
						||
| 
								 | 
							
								        return c
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    c = np.moveaxis(c, iaxis, 0)
							 | 
						||
| 
								 | 
							
								    n = len(c)
							 | 
						||
| 
								 | 
							
								    if cnt >= n:
							 | 
						||
| 
								 | 
							
								        c = c[:1]*0
							 | 
						||
| 
								 | 
							
								    else:
							 | 
						||
| 
								 | 
							
								        for i in range(cnt):
							 | 
						||
| 
								 | 
							
								            n = n - 1
							 | 
						||
| 
								 | 
							
								            c *= scl
							 | 
						||
| 
								 | 
							
								            der = np.empty((n,) + c.shape[1:], dtype=c.dtype)
							 | 
						||
| 
								 | 
							
								            for j in range(n, 1, -1):
							 | 
						||
| 
								 | 
							
								                der[j - 1] = -c[j]
							 | 
						||
| 
								 | 
							
								                c[j - 1] += c[j]
							 | 
						||
| 
								 | 
							
								            der[0] = -c[1]
							 | 
						||
| 
								 | 
							
								            c = der
							 | 
						||
| 
								 | 
							
								    c = np.moveaxis(c, 0, iaxis)
							 | 
						||
| 
								 | 
							
								    return c
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def lagint(c, m=1, k=[], lbnd=0, scl=1, axis=0):
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    Integrate a Laguerre series.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Returns the Laguerre series coefficients `c` integrated `m` times from
							 | 
						||
| 
								 | 
							
								    `lbnd` along `axis`. At each iteration the resulting series is
							 | 
						||
| 
								 | 
							
								    **multiplied** by `scl` and an integration constant, `k`, is added.
							 | 
						||
| 
								 | 
							
								    The scaling factor is for use in a linear change of variable.  ("Buyer
							 | 
						||
| 
								 | 
							
								    beware": note that, depending on what one is doing, one may want `scl`
							 | 
						||
| 
								 | 
							
								    to be the reciprocal of what one might expect; for more information,
							 | 
						||
| 
								 | 
							
								    see the Notes section below.)  The argument `c` is an array of
							 | 
						||
| 
								 | 
							
								    coefficients from low to high degree along each axis, e.g., [1,2,3]
							 | 
						||
| 
								 | 
							
								    represents the series ``L_0 + 2*L_1 + 3*L_2`` while [[1,2],[1,2]]
							 | 
						||
| 
								 | 
							
								    represents ``1*L_0(x)*L_0(y) + 1*L_1(x)*L_0(y) + 2*L_0(x)*L_1(y) +
							 | 
						||
| 
								 | 
							
								    2*L_1(x)*L_1(y)`` if axis=0 is ``x`` and axis=1 is ``y``.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Parameters
							 | 
						||
| 
								 | 
							
								    ----------
							 | 
						||
| 
								 | 
							
								    c : array_like
							 | 
						||
| 
								 | 
							
								        Array of Laguerre series coefficients. If `c` is multidimensional
							 | 
						||
| 
								 | 
							
								        the different axis correspond to different variables with the
							 | 
						||
| 
								 | 
							
								        degree in each axis given by the corresponding index.
							 | 
						||
| 
								 | 
							
								    m : int, optional
							 | 
						||
| 
								 | 
							
								        Order of integration, must be positive. (Default: 1)
							 | 
						||
| 
								 | 
							
								    k : {[], list, scalar}, optional
							 | 
						||
| 
								 | 
							
								        Integration constant(s).  The value of the first integral at
							 | 
						||
| 
								 | 
							
								        ``lbnd`` is the first value in the list, the value of the second
							 | 
						||
| 
								 | 
							
								        integral at ``lbnd`` is the second value, etc.  If ``k == []`` (the
							 | 
						||
| 
								 | 
							
								        default), all constants are set to zero.  If ``m == 1``, a single
							 | 
						||
| 
								 | 
							
								        scalar can be given instead of a list.
							 | 
						||
| 
								 | 
							
								    lbnd : scalar, optional
							 | 
						||
| 
								 | 
							
								        The lower bound of the integral. (Default: 0)
							 | 
						||
| 
								 | 
							
								    scl : scalar, optional
							 | 
						||
| 
								 | 
							
								        Following each integration the result is *multiplied* by `scl`
							 | 
						||
| 
								 | 
							
								        before the integration constant is added. (Default: 1)
							 | 
						||
| 
								 | 
							
								    axis : int, optional
							 | 
						||
| 
								 | 
							
								        Axis over which the integral is taken. (Default: 0).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        .. versionadded:: 1.7.0
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Returns
							 | 
						||
| 
								 | 
							
								    -------
							 | 
						||
| 
								 | 
							
								    S : ndarray
							 | 
						||
| 
								 | 
							
								        Laguerre series coefficients of the integral.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Raises
							 | 
						||
| 
								 | 
							
								    ------
							 | 
						||
| 
								 | 
							
								    ValueError
							 | 
						||
| 
								 | 
							
								        If ``m < 0``, ``len(k) > m``, ``np.ndim(lbnd) != 0``, or
							 | 
						||
| 
								 | 
							
								        ``np.ndim(scl) != 0``.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    See Also
							 | 
						||
| 
								 | 
							
								    --------
							 | 
						||
| 
								 | 
							
								    lagder
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Notes
							 | 
						||
| 
								 | 
							
								    -----
							 | 
						||
| 
								 | 
							
								    Note that the result of each integration is *multiplied* by `scl`.
							 | 
						||
| 
								 | 
							
								    Why is this important to note?  Say one is making a linear change of
							 | 
						||
| 
								 | 
							
								    variable :math:`u = ax + b` in an integral relative to `x`.  Then
							 | 
						||
| 
								 | 
							
								    :math:`dx = du/a`, so one will need to set `scl` equal to
							 | 
						||
| 
								 | 
							
								    :math:`1/a` - perhaps not what one would have first thought.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Also note that, in general, the result of integrating a C-series needs
							 | 
						||
| 
								 | 
							
								    to be "reprojected" onto the C-series basis set.  Thus, typically,
							 | 
						||
| 
								 | 
							
								    the result of this function is "unintuitive," albeit correct; see
							 | 
						||
| 
								 | 
							
								    Examples section below.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Examples
							 | 
						||
| 
								 | 
							
								    --------
							 | 
						||
| 
								 | 
							
								    >>> from numpy.polynomial.laguerre import lagint
							 | 
						||
| 
								 | 
							
								    >>> lagint([1,2,3])
							 | 
						||
| 
								 | 
							
								    array([ 1.,  1.,  1., -3.])
							 | 
						||
| 
								 | 
							
								    >>> lagint([1,2,3], m=2)
							 | 
						||
| 
								 | 
							
								    array([ 1.,  0.,  0., -4.,  3.])
							 | 
						||
| 
								 | 
							
								    >>> lagint([1,2,3], k=1)
							 | 
						||
| 
								 | 
							
								    array([ 2.,  1.,  1., -3.])
							 | 
						||
| 
								 | 
							
								    >>> lagint([1,2,3], lbnd=-1)
							 | 
						||
| 
								 | 
							
								    array([11.5,  1. ,  1. , -3. ])
							 | 
						||
| 
								 | 
							
								    >>> lagint([1,2], m=2, k=[1,2], lbnd=-1)
							 | 
						||
| 
								 | 
							
								    array([ 11.16666667,  -5.        ,  -3.        ,   2.        ]) # may vary
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    c = np.array(c, ndmin=1, copy=True)
							 | 
						||
| 
								 | 
							
								    if c.dtype.char in '?bBhHiIlLqQpP':
							 | 
						||
| 
								 | 
							
								        c = c.astype(np.double)
							 | 
						||
| 
								 | 
							
								    if not np.iterable(k):
							 | 
						||
| 
								 | 
							
								        k = [k]
							 | 
						||
| 
								 | 
							
								    cnt = pu._deprecate_as_int(m, "the order of integration")
							 | 
						||
| 
								 | 
							
								    iaxis = pu._deprecate_as_int(axis, "the axis")
							 | 
						||
| 
								 | 
							
								    if cnt < 0:
							 | 
						||
| 
								 | 
							
								        raise ValueError("The order of integration must be non-negative")
							 | 
						||
| 
								 | 
							
								    if len(k) > cnt:
							 | 
						||
| 
								 | 
							
								        raise ValueError("Too many integration constants")
							 | 
						||
| 
								 | 
							
								    if np.ndim(lbnd) != 0:
							 | 
						||
| 
								 | 
							
								        raise ValueError("lbnd must be a scalar.")
							 | 
						||
| 
								 | 
							
								    if np.ndim(scl) != 0:
							 | 
						||
| 
								 | 
							
								        raise ValueError("scl must be a scalar.")
							 | 
						||
| 
								 | 
							
								    iaxis = normalize_axis_index(iaxis, c.ndim)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    if cnt == 0:
							 | 
						||
| 
								 | 
							
								        return c
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    c = np.moveaxis(c, iaxis, 0)
							 | 
						||
| 
								 | 
							
								    k = list(k) + [0]*(cnt - len(k))
							 | 
						||
| 
								 | 
							
								    for i in range(cnt):
							 | 
						||
| 
								 | 
							
								        n = len(c)
							 | 
						||
| 
								 | 
							
								        c *= scl
							 | 
						||
| 
								 | 
							
								        if n == 1 and np.all(c[0] == 0):
							 | 
						||
| 
								 | 
							
								            c[0] += k[i]
							 | 
						||
| 
								 | 
							
								        else:
							 | 
						||
| 
								 | 
							
								            tmp = np.empty((n + 1,) + c.shape[1:], dtype=c.dtype)
							 | 
						||
| 
								 | 
							
								            tmp[0] = c[0]
							 | 
						||
| 
								 | 
							
								            tmp[1] = -c[0]
							 | 
						||
| 
								 | 
							
								            for j in range(1, n):
							 | 
						||
| 
								 | 
							
								                tmp[j] += c[j]
							 | 
						||
| 
								 | 
							
								                tmp[j + 1] = -c[j]
							 | 
						||
| 
								 | 
							
								            tmp[0] += k[i] - lagval(lbnd, tmp)
							 | 
						||
| 
								 | 
							
								            c = tmp
							 | 
						||
| 
								 | 
							
								    c = np.moveaxis(c, 0, iaxis)
							 | 
						||
| 
								 | 
							
								    return c
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def lagval(x, c, tensor=True):
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    Evaluate a Laguerre series at points x.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    If `c` is of length `n + 1`, this function returns the value:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    .. math:: p(x) = c_0 * L_0(x) + c_1 * L_1(x) + ... + c_n * L_n(x)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    The parameter `x` is converted to an array only if it is a tuple or a
							 | 
						||
| 
								 | 
							
								    list, otherwise it is treated as a scalar. In either case, either `x`
							 | 
						||
| 
								 | 
							
								    or its elements must support multiplication and addition both with
							 | 
						||
| 
								 | 
							
								    themselves and with the elements of `c`.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    If `c` is a 1-D array, then `p(x)` will have the same shape as `x`.  If
							 | 
						||
| 
								 | 
							
								    `c` is multidimensional, then the shape of the result depends on the
							 | 
						||
| 
								 | 
							
								    value of `tensor`. If `tensor` is true the shape will be c.shape[1:] +
							 | 
						||
| 
								 | 
							
								    x.shape. If `tensor` is false the shape will be c.shape[1:]. Note that
							 | 
						||
| 
								 | 
							
								    scalars have shape (,).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Trailing zeros in the coefficients will be used in the evaluation, so
							 | 
						||
| 
								 | 
							
								    they should be avoided if efficiency is a concern.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Parameters
							 | 
						||
| 
								 | 
							
								    ----------
							 | 
						||
| 
								 | 
							
								    x : array_like, compatible object
							 | 
						||
| 
								 | 
							
								        If `x` is a list or tuple, it is converted to an ndarray, otherwise
							 | 
						||
| 
								 | 
							
								        it is left unchanged and treated as a scalar. In either case, `x`
							 | 
						||
| 
								 | 
							
								        or its elements must support addition and multiplication with
							 | 
						||
| 
								 | 
							
								        themselves and with the elements of `c`.
							 | 
						||
| 
								 | 
							
								    c : array_like
							 | 
						||
| 
								 | 
							
								        Array of coefficients ordered so that the coefficients for terms of
							 | 
						||
| 
								 | 
							
								        degree n are contained in c[n]. If `c` is multidimensional the
							 | 
						||
| 
								 | 
							
								        remaining indices enumerate multiple polynomials. In the two
							 | 
						||
| 
								 | 
							
								        dimensional case the coefficients may be thought of as stored in
							 | 
						||
| 
								 | 
							
								        the columns of `c`.
							 | 
						||
| 
								 | 
							
								    tensor : boolean, optional
							 | 
						||
| 
								 | 
							
								        If True, the shape of the coefficient array is extended with ones
							 | 
						||
| 
								 | 
							
								        on the right, one for each dimension of `x`. Scalars have dimension 0
							 | 
						||
| 
								 | 
							
								        for this action. The result is that every column of coefficients in
							 | 
						||
| 
								 | 
							
								        `c` is evaluated for every element of `x`. If False, `x` is broadcast
							 | 
						||
| 
								 | 
							
								        over the columns of `c` for the evaluation.  This keyword is useful
							 | 
						||
| 
								 | 
							
								        when `c` is multidimensional. The default value is True.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        .. versionadded:: 1.7.0
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Returns
							 | 
						||
| 
								 | 
							
								    -------
							 | 
						||
| 
								 | 
							
								    values : ndarray, algebra_like
							 | 
						||
| 
								 | 
							
								        The shape of the return value is described above.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    See Also
							 | 
						||
| 
								 | 
							
								    --------
							 | 
						||
| 
								 | 
							
								    lagval2d, laggrid2d, lagval3d, laggrid3d
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Notes
							 | 
						||
| 
								 | 
							
								    -----
							 | 
						||
| 
								 | 
							
								    The evaluation uses Clenshaw recursion, aka synthetic division.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Examples
							 | 
						||
| 
								 | 
							
								    --------
							 | 
						||
| 
								 | 
							
								    >>> from numpy.polynomial.laguerre import lagval
							 | 
						||
| 
								 | 
							
								    >>> coef = [1,2,3]
							 | 
						||
| 
								 | 
							
								    >>> lagval(1, coef)
							 | 
						||
| 
								 | 
							
								    -0.5
							 | 
						||
| 
								 | 
							
								    >>> lagval([[1,2],[3,4]], coef)
							 | 
						||
| 
								 | 
							
								    array([[-0.5, -4. ],
							 | 
						||
| 
								 | 
							
								           [-4.5, -2. ]])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    c = np.array(c, ndmin=1, copy=False)
							 | 
						||
| 
								 | 
							
								    if c.dtype.char in '?bBhHiIlLqQpP':
							 | 
						||
| 
								 | 
							
								        c = c.astype(np.double)
							 | 
						||
| 
								 | 
							
								    if isinstance(x, (tuple, list)):
							 | 
						||
| 
								 | 
							
								        x = np.asarray(x)
							 | 
						||
| 
								 | 
							
								    if isinstance(x, np.ndarray) and tensor:
							 | 
						||
| 
								 | 
							
								        c = c.reshape(c.shape + (1,)*x.ndim)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    if len(c) == 1:
							 | 
						||
| 
								 | 
							
								        c0 = c[0]
							 | 
						||
| 
								 | 
							
								        c1 = 0
							 | 
						||
| 
								 | 
							
								    elif len(c) == 2:
							 | 
						||
| 
								 | 
							
								        c0 = c[0]
							 | 
						||
| 
								 | 
							
								        c1 = c[1]
							 | 
						||
| 
								 | 
							
								    else:
							 | 
						||
| 
								 | 
							
								        nd = len(c)
							 | 
						||
| 
								 | 
							
								        c0 = c[-2]
							 | 
						||
| 
								 | 
							
								        c1 = c[-1]
							 | 
						||
| 
								 | 
							
								        for i in range(3, len(c) + 1):
							 | 
						||
| 
								 | 
							
								            tmp = c0
							 | 
						||
| 
								 | 
							
								            nd = nd - 1
							 | 
						||
| 
								 | 
							
								            c0 = c[-i] - (c1*(nd - 1))/nd
							 | 
						||
| 
								 | 
							
								            c1 = tmp + (c1*((2*nd - 1) - x))/nd
							 | 
						||
| 
								 | 
							
								    return c0 + c1*(1 - x)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def lagval2d(x, y, c):
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    Evaluate a 2-D Laguerre series at points (x, y).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    This function returns the values:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    .. math:: p(x,y) = \\sum_{i,j} c_{i,j} * L_i(x) * L_j(y)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    The parameters `x` and `y` are converted to arrays only if they are
							 | 
						||
| 
								 | 
							
								    tuples or a lists, otherwise they are treated as a scalars and they
							 | 
						||
| 
								 | 
							
								    must have the same shape after conversion. In either case, either `x`
							 | 
						||
| 
								 | 
							
								    and `y` or their elements must support multiplication and addition both
							 | 
						||
| 
								 | 
							
								    with themselves and with the elements of `c`.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    If `c` is a 1-D array a one is implicitly appended to its shape to make
							 | 
						||
| 
								 | 
							
								    it 2-D. The shape of the result will be c.shape[2:] + x.shape.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Parameters
							 | 
						||
| 
								 | 
							
								    ----------
							 | 
						||
| 
								 | 
							
								    x, y : array_like, compatible objects
							 | 
						||
| 
								 | 
							
								        The two dimensional series is evaluated at the points `(x, y)`,
							 | 
						||
| 
								 | 
							
								        where `x` and `y` must have the same shape. If `x` or `y` is a list
							 | 
						||
| 
								 | 
							
								        or tuple, it is first converted to an ndarray, otherwise it is left
							 | 
						||
| 
								 | 
							
								        unchanged and if it isn't an ndarray it is treated as a scalar.
							 | 
						||
| 
								 | 
							
								    c : array_like
							 | 
						||
| 
								 | 
							
								        Array of coefficients ordered so that the coefficient of the term
							 | 
						||
| 
								 | 
							
								        of multi-degree i,j is contained in ``c[i,j]``. If `c` has
							 | 
						||
| 
								 | 
							
								        dimension greater than two the remaining indices enumerate multiple
							 | 
						||
| 
								 | 
							
								        sets of coefficients.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Returns
							 | 
						||
| 
								 | 
							
								    -------
							 | 
						||
| 
								 | 
							
								    values : ndarray, compatible object
							 | 
						||
| 
								 | 
							
								        The values of the two dimensional polynomial at points formed with
							 | 
						||
| 
								 | 
							
								        pairs of corresponding values from `x` and `y`.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    See Also
							 | 
						||
| 
								 | 
							
								    --------
							 | 
						||
| 
								 | 
							
								    lagval, laggrid2d, lagval3d, laggrid3d
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Notes
							 | 
						||
| 
								 | 
							
								    -----
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    .. versionadded:: 1.7.0
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    return pu._valnd(lagval, c, x, y)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def laggrid2d(x, y, c):
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    Evaluate a 2-D Laguerre series on the Cartesian product of x and y.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    This function returns the values:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    .. math:: p(a,b) = \\sum_{i,j} c_{i,j} * L_i(a) * L_j(b)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    where the points `(a, b)` consist of all pairs formed by taking
							 | 
						||
| 
								 | 
							
								    `a` from `x` and `b` from `y`. The resulting points form a grid with
							 | 
						||
| 
								 | 
							
								    `x` in the first dimension and `y` in the second.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    The parameters `x` and `y` are converted to arrays only if they are
							 | 
						||
| 
								 | 
							
								    tuples or a lists, otherwise they are treated as a scalars. In either
							 | 
						||
| 
								 | 
							
								    case, either `x` and `y` or their elements must support multiplication
							 | 
						||
| 
								 | 
							
								    and addition both with themselves and with the elements of `c`.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    If `c` has fewer than two dimensions, ones are implicitly appended to
							 | 
						||
| 
								 | 
							
								    its shape to make it 2-D. The shape of the result will be c.shape[2:] +
							 | 
						||
| 
								 | 
							
								    x.shape + y.shape.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Parameters
							 | 
						||
| 
								 | 
							
								    ----------
							 | 
						||
| 
								 | 
							
								    x, y : array_like, compatible objects
							 | 
						||
| 
								 | 
							
								        The two dimensional series is evaluated at the points in the
							 | 
						||
| 
								 | 
							
								        Cartesian product of `x` and `y`.  If `x` or `y` is a list or
							 | 
						||
| 
								 | 
							
								        tuple, it is first converted to an ndarray, otherwise it is left
							 | 
						||
| 
								 | 
							
								        unchanged and, if it isn't an ndarray, it is treated as a scalar.
							 | 
						||
| 
								 | 
							
								    c : array_like
							 | 
						||
| 
								 | 
							
								        Array of coefficients ordered so that the coefficient of the term of
							 | 
						||
| 
								 | 
							
								        multi-degree i,j is contained in `c[i,j]`. If `c` has dimension
							 | 
						||
| 
								 | 
							
								        greater than two the remaining indices enumerate multiple sets of
							 | 
						||
| 
								 | 
							
								        coefficients.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Returns
							 | 
						||
| 
								 | 
							
								    -------
							 | 
						||
| 
								 | 
							
								    values : ndarray, compatible object
							 | 
						||
| 
								 | 
							
								        The values of the two dimensional Chebyshev series at points in the
							 | 
						||
| 
								 | 
							
								        Cartesian product of `x` and `y`.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    See Also
							 | 
						||
| 
								 | 
							
								    --------
							 | 
						||
| 
								 | 
							
								    lagval, lagval2d, lagval3d, laggrid3d
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Notes
							 | 
						||
| 
								 | 
							
								    -----
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    .. versionadded:: 1.7.0
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    return pu._gridnd(lagval, c, x, y)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def lagval3d(x, y, z, c):
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    Evaluate a 3-D Laguerre series at points (x, y, z).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    This function returns the values:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    .. math:: p(x,y,z) = \\sum_{i,j,k} c_{i,j,k} * L_i(x) * L_j(y) * L_k(z)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    The parameters `x`, `y`, and `z` are converted to arrays only if
							 | 
						||
| 
								 | 
							
								    they are tuples or a lists, otherwise they are treated as a scalars and
							 | 
						||
| 
								 | 
							
								    they must have the same shape after conversion. In either case, either
							 | 
						||
| 
								 | 
							
								    `x`, `y`, and `z` or their elements must support multiplication and
							 | 
						||
| 
								 | 
							
								    addition both with themselves and with the elements of `c`.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    If `c` has fewer than 3 dimensions, ones are implicitly appended to its
							 | 
						||
| 
								 | 
							
								    shape to make it 3-D. The shape of the result will be c.shape[3:] +
							 | 
						||
| 
								 | 
							
								    x.shape.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Parameters
							 | 
						||
| 
								 | 
							
								    ----------
							 | 
						||
| 
								 | 
							
								    x, y, z : array_like, compatible object
							 | 
						||
| 
								 | 
							
								        The three dimensional series is evaluated at the points
							 | 
						||
| 
								 | 
							
								        `(x, y, z)`, where `x`, `y`, and `z` must have the same shape.  If
							 | 
						||
| 
								 | 
							
								        any of `x`, `y`, or `z` is a list or tuple, it is first converted
							 | 
						||
| 
								 | 
							
								        to an ndarray, otherwise it is left unchanged and if it isn't an
							 | 
						||
| 
								 | 
							
								        ndarray it is  treated as a scalar.
							 | 
						||
| 
								 | 
							
								    c : array_like
							 | 
						||
| 
								 | 
							
								        Array of coefficients ordered so that the coefficient of the term of
							 | 
						||
| 
								 | 
							
								        multi-degree i,j,k is contained in ``c[i,j,k]``. If `c` has dimension
							 | 
						||
| 
								 | 
							
								        greater than 3 the remaining indices enumerate multiple sets of
							 | 
						||
| 
								 | 
							
								        coefficients.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Returns
							 | 
						||
| 
								 | 
							
								    -------
							 | 
						||
| 
								 | 
							
								    values : ndarray, compatible object
							 | 
						||
| 
								 | 
							
								        The values of the multidimensional polynomial on points formed with
							 | 
						||
| 
								 | 
							
								        triples of corresponding values from `x`, `y`, and `z`.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    See Also
							 | 
						||
| 
								 | 
							
								    --------
							 | 
						||
| 
								 | 
							
								    lagval, lagval2d, laggrid2d, laggrid3d
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Notes
							 | 
						||
| 
								 | 
							
								    -----
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    .. versionadded:: 1.7.0
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    return pu._valnd(lagval, c, x, y, z)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def laggrid3d(x, y, z, c):
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    Evaluate a 3-D Laguerre series on the Cartesian product of x, y, and z.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    This function returns the values:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    .. math:: p(a,b,c) = \\sum_{i,j,k} c_{i,j,k} * L_i(a) * L_j(b) * L_k(c)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    where the points `(a, b, c)` consist of all triples formed by taking
							 | 
						||
| 
								 | 
							
								    `a` from `x`, `b` from `y`, and `c` from `z`. The resulting points form
							 | 
						||
| 
								 | 
							
								    a grid with `x` in the first dimension, `y` in the second, and `z` in
							 | 
						||
| 
								 | 
							
								    the third.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    The parameters `x`, `y`, and `z` are converted to arrays only if they
							 | 
						||
| 
								 | 
							
								    are tuples or a lists, otherwise they are treated as a scalars. In
							 | 
						||
| 
								 | 
							
								    either case, either `x`, `y`, and `z` or their elements must support
							 | 
						||
| 
								 | 
							
								    multiplication and addition both with themselves and with the elements
							 | 
						||
| 
								 | 
							
								    of `c`.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    If `c` has fewer than three dimensions, ones are implicitly appended to
							 | 
						||
| 
								 | 
							
								    its shape to make it 3-D. The shape of the result will be c.shape[3:] +
							 | 
						||
| 
								 | 
							
								    x.shape + y.shape + z.shape.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Parameters
							 | 
						||
| 
								 | 
							
								    ----------
							 | 
						||
| 
								 | 
							
								    x, y, z : array_like, compatible objects
							 | 
						||
| 
								 | 
							
								        The three dimensional series is evaluated at the points in the
							 | 
						||
| 
								 | 
							
								        Cartesian product of `x`, `y`, and `z`.  If `x`,`y`, or `z` is a
							 | 
						||
| 
								 | 
							
								        list or tuple, it is first converted to an ndarray, otherwise it is
							 | 
						||
| 
								 | 
							
								        left unchanged and, if it isn't an ndarray, it is treated as a
							 | 
						||
| 
								 | 
							
								        scalar.
							 | 
						||
| 
								 | 
							
								    c : array_like
							 | 
						||
| 
								 | 
							
								        Array of coefficients ordered so that the coefficients for terms of
							 | 
						||
| 
								 | 
							
								        degree i,j are contained in ``c[i,j]``. If `c` has dimension
							 | 
						||
| 
								 | 
							
								        greater than two the remaining indices enumerate multiple sets of
							 | 
						||
| 
								 | 
							
								        coefficients.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Returns
							 | 
						||
| 
								 | 
							
								    -------
							 | 
						||
| 
								 | 
							
								    values : ndarray, compatible object
							 | 
						||
| 
								 | 
							
								        The values of the two dimensional polynomial at points in the Cartesian
							 | 
						||
| 
								 | 
							
								        product of `x` and `y`.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    See Also
							 | 
						||
| 
								 | 
							
								    --------
							 | 
						||
| 
								 | 
							
								    lagval, lagval2d, laggrid2d, lagval3d
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Notes
							 | 
						||
| 
								 | 
							
								    -----
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    .. versionadded:: 1.7.0
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    return pu._gridnd(lagval, c, x, y, z)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def lagvander(x, deg):
							 | 
						||
| 
								 | 
							
								    """Pseudo-Vandermonde matrix of given degree.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Returns the pseudo-Vandermonde matrix of degree `deg` and sample points
							 | 
						||
| 
								 | 
							
								    `x`. The pseudo-Vandermonde matrix is defined by
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    .. math:: V[..., i] = L_i(x)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    where `0 <= i <= deg`. The leading indices of `V` index the elements of
							 | 
						||
| 
								 | 
							
								    `x` and the last index is the degree of the Laguerre polynomial.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    If `c` is a 1-D array of coefficients of length `n + 1` and `V` is the
							 | 
						||
| 
								 | 
							
								    array ``V = lagvander(x, n)``, then ``np.dot(V, c)`` and
							 | 
						||
| 
								 | 
							
								    ``lagval(x, c)`` are the same up to roundoff. This equivalence is
							 | 
						||
| 
								 | 
							
								    useful both for least squares fitting and for the evaluation of a large
							 | 
						||
| 
								 | 
							
								    number of Laguerre series of the same degree and sample points.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Parameters
							 | 
						||
| 
								 | 
							
								    ----------
							 | 
						||
| 
								 | 
							
								    x : array_like
							 | 
						||
| 
								 | 
							
								        Array of points. The dtype is converted to float64 or complex128
							 | 
						||
| 
								 | 
							
								        depending on whether any of the elements are complex. If `x` is
							 | 
						||
| 
								 | 
							
								        scalar it is converted to a 1-D array.
							 | 
						||
| 
								 | 
							
								    deg : int
							 | 
						||
| 
								 | 
							
								        Degree of the resulting matrix.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Returns
							 | 
						||
| 
								 | 
							
								    -------
							 | 
						||
| 
								 | 
							
								    vander : ndarray
							 | 
						||
| 
								 | 
							
								        The pseudo-Vandermonde matrix. The shape of the returned matrix is
							 | 
						||
| 
								 | 
							
								        ``x.shape + (deg + 1,)``, where The last index is the degree of the
							 | 
						||
| 
								 | 
							
								        corresponding Laguerre polynomial.  The dtype will be the same as
							 | 
						||
| 
								 | 
							
								        the converted `x`.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Examples
							 | 
						||
| 
								 | 
							
								    --------
							 | 
						||
| 
								 | 
							
								    >>> from numpy.polynomial.laguerre import lagvander
							 | 
						||
| 
								 | 
							
								    >>> x = np.array([0, 1, 2])
							 | 
						||
| 
								 | 
							
								    >>> lagvander(x, 3)
							 | 
						||
| 
								 | 
							
								    array([[ 1.        ,  1.        ,  1.        ,  1.        ],
							 | 
						||
| 
								 | 
							
								           [ 1.        ,  0.        , -0.5       , -0.66666667],
							 | 
						||
| 
								 | 
							
								           [ 1.        , -1.        , -1.        , -0.33333333]])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    ideg = pu._deprecate_as_int(deg, "deg")
							 | 
						||
| 
								 | 
							
								    if ideg < 0:
							 | 
						||
| 
								 | 
							
								        raise ValueError("deg must be non-negative")
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    x = np.array(x, copy=False, ndmin=1) + 0.0
							 | 
						||
| 
								 | 
							
								    dims = (ideg + 1,) + x.shape
							 | 
						||
| 
								 | 
							
								    dtyp = x.dtype
							 | 
						||
| 
								 | 
							
								    v = np.empty(dims, dtype=dtyp)
							 | 
						||
| 
								 | 
							
								    v[0] = x*0 + 1
							 | 
						||
| 
								 | 
							
								    if ideg > 0:
							 | 
						||
| 
								 | 
							
								        v[1] = 1 - x
							 | 
						||
| 
								 | 
							
								        for i in range(2, ideg + 1):
							 | 
						||
| 
								 | 
							
								            v[i] = (v[i-1]*(2*i - 1 - x) - v[i-2]*(i - 1))/i
							 | 
						||
| 
								 | 
							
								    return np.moveaxis(v, 0, -1)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def lagvander2d(x, y, deg):
							 | 
						||
| 
								 | 
							
								    """Pseudo-Vandermonde matrix of given degrees.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Returns the pseudo-Vandermonde matrix of degrees `deg` and sample
							 | 
						||
| 
								 | 
							
								    points `(x, y)`. The pseudo-Vandermonde matrix is defined by
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    .. math:: V[..., (deg[1] + 1)*i + j] = L_i(x) * L_j(y),
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    where `0 <= i <= deg[0]` and `0 <= j <= deg[1]`. The leading indices of
							 | 
						||
| 
								 | 
							
								    `V` index the points `(x, y)` and the last index encodes the degrees of
							 | 
						||
| 
								 | 
							
								    the Laguerre polynomials.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    If ``V = lagvander2d(x, y, [xdeg, ydeg])``, then the columns of `V`
							 | 
						||
| 
								 | 
							
								    correspond to the elements of a 2-D coefficient array `c` of shape
							 | 
						||
| 
								 | 
							
								    (xdeg + 1, ydeg + 1) in the order
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    .. math:: c_{00}, c_{01}, c_{02} ... , c_{10}, c_{11}, c_{12} ...
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    and ``np.dot(V, c.flat)`` and ``lagval2d(x, y, c)`` will be the same
							 | 
						||
| 
								 | 
							
								    up to roundoff. This equivalence is useful both for least squares
							 | 
						||
| 
								 | 
							
								    fitting and for the evaluation of a large number of 2-D Laguerre
							 | 
						||
| 
								 | 
							
								    series of the same degrees and sample points.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Parameters
							 | 
						||
| 
								 | 
							
								    ----------
							 | 
						||
| 
								 | 
							
								    x, y : array_like
							 | 
						||
| 
								 | 
							
								        Arrays of point coordinates, all of the same shape. The dtypes
							 | 
						||
| 
								 | 
							
								        will be converted to either float64 or complex128 depending on
							 | 
						||
| 
								 | 
							
								        whether any of the elements are complex. Scalars are converted to
							 | 
						||
| 
								 | 
							
								        1-D arrays.
							 | 
						||
| 
								 | 
							
								    deg : list of ints
							 | 
						||
| 
								 | 
							
								        List of maximum degrees of the form [x_deg, y_deg].
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Returns
							 | 
						||
| 
								 | 
							
								    -------
							 | 
						||
| 
								 | 
							
								    vander2d : ndarray
							 | 
						||
| 
								 | 
							
								        The shape of the returned matrix is ``x.shape + (order,)``, where
							 | 
						||
| 
								 | 
							
								        :math:`order = (deg[0]+1)*(deg[1]+1)`.  The dtype will be the same
							 | 
						||
| 
								 | 
							
								        as the converted `x` and `y`.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    See Also
							 | 
						||
| 
								 | 
							
								    --------
							 | 
						||
| 
								 | 
							
								    lagvander, lagvander3d, lagval2d, lagval3d
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Notes
							 | 
						||
| 
								 | 
							
								    -----
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    .. versionadded:: 1.7.0
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    return pu._vander_nd_flat((lagvander, lagvander), (x, y), deg)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def lagvander3d(x, y, z, deg):
							 | 
						||
| 
								 | 
							
								    """Pseudo-Vandermonde matrix of given degrees.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Returns the pseudo-Vandermonde matrix of degrees `deg` and sample
							 | 
						||
| 
								 | 
							
								    points `(x, y, z)`. If `l, m, n` are the given degrees in `x, y, z`,
							 | 
						||
| 
								 | 
							
								    then The pseudo-Vandermonde matrix is defined by
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    .. math:: V[..., (m+1)(n+1)i + (n+1)j + k] = L_i(x)*L_j(y)*L_k(z),
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    where `0 <= i <= l`, `0 <= j <= m`, and `0 <= j <= n`.  The leading
							 | 
						||
| 
								 | 
							
								    indices of `V` index the points `(x, y, z)` and the last index encodes
							 | 
						||
| 
								 | 
							
								    the degrees of the Laguerre polynomials.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    If ``V = lagvander3d(x, y, z, [xdeg, ydeg, zdeg])``, then the columns
							 | 
						||
| 
								 | 
							
								    of `V` correspond to the elements of a 3-D coefficient array `c` of
							 | 
						||
| 
								 | 
							
								    shape (xdeg + 1, ydeg + 1, zdeg + 1) in the order
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    .. math:: c_{000}, c_{001}, c_{002},... , c_{010}, c_{011}, c_{012},...
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    and  ``np.dot(V, c.flat)`` and ``lagval3d(x, y, z, c)`` will be the
							 | 
						||
| 
								 | 
							
								    same up to roundoff. This equivalence is useful both for least squares
							 | 
						||
| 
								 | 
							
								    fitting and for the evaluation of a large number of 3-D Laguerre
							 | 
						||
| 
								 | 
							
								    series of the same degrees and sample points.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Parameters
							 | 
						||
| 
								 | 
							
								    ----------
							 | 
						||
| 
								 | 
							
								    x, y, z : array_like
							 | 
						||
| 
								 | 
							
								        Arrays of point coordinates, all of the same shape. The dtypes will
							 | 
						||
| 
								 | 
							
								        be converted to either float64 or complex128 depending on whether
							 | 
						||
| 
								 | 
							
								        any of the elements are complex. Scalars are converted to 1-D
							 | 
						||
| 
								 | 
							
								        arrays.
							 | 
						||
| 
								 | 
							
								    deg : list of ints
							 | 
						||
| 
								 | 
							
								        List of maximum degrees of the form [x_deg, y_deg, z_deg].
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Returns
							 | 
						||
| 
								 | 
							
								    -------
							 | 
						||
| 
								 | 
							
								    vander3d : ndarray
							 | 
						||
| 
								 | 
							
								        The shape of the returned matrix is ``x.shape + (order,)``, where
							 | 
						||
| 
								 | 
							
								        :math:`order = (deg[0]+1)*(deg[1]+1)*(deg[2]+1)`.  The dtype will
							 | 
						||
| 
								 | 
							
								        be the same as the converted `x`, `y`, and `z`.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    See Also
							 | 
						||
| 
								 | 
							
								    --------
							 | 
						||
| 
								 | 
							
								    lagvander, lagvander3d, lagval2d, lagval3d
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Notes
							 | 
						||
| 
								 | 
							
								    -----
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    .. versionadded:: 1.7.0
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    return pu._vander_nd_flat((lagvander, lagvander, lagvander), (x, y, z), deg)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def lagfit(x, y, deg, rcond=None, full=False, w=None):
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    Least squares fit of Laguerre series to data.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Return the coefficients of a Laguerre series of degree `deg` that is the
							 | 
						||
| 
								 | 
							
								    least squares fit to the data values `y` given at points `x`. If `y` is
							 | 
						||
| 
								 | 
							
								    1-D the returned coefficients will also be 1-D. If `y` is 2-D multiple
							 | 
						||
| 
								 | 
							
								    fits are done, one for each column of `y`, and the resulting
							 | 
						||
| 
								 | 
							
								    coefficients are stored in the corresponding columns of a 2-D return.
							 | 
						||
| 
								 | 
							
								    The fitted polynomial(s) are in the form
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    .. math::  p(x) = c_0 + c_1 * L_1(x) + ... + c_n * L_n(x),
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    where ``n`` is `deg`.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Parameters
							 | 
						||
| 
								 | 
							
								    ----------
							 | 
						||
| 
								 | 
							
								    x : array_like, shape (M,)
							 | 
						||
| 
								 | 
							
								        x-coordinates of the M sample points ``(x[i], y[i])``.
							 | 
						||
| 
								 | 
							
								    y : array_like, shape (M,) or (M, K)
							 | 
						||
| 
								 | 
							
								        y-coordinates of the sample points. Several data sets of sample
							 | 
						||
| 
								 | 
							
								        points sharing the same x-coordinates can be fitted at once by
							 | 
						||
| 
								 | 
							
								        passing in a 2D-array that contains one dataset per column.
							 | 
						||
| 
								 | 
							
								    deg : int or 1-D array_like
							 | 
						||
| 
								 | 
							
								        Degree(s) of the fitting polynomials. If `deg` is a single integer
							 | 
						||
| 
								 | 
							
								        all terms up to and including the `deg`'th term are included in the
							 | 
						||
| 
								 | 
							
								        fit. For NumPy versions >= 1.11.0 a list of integers specifying the
							 | 
						||
| 
								 | 
							
								        degrees of the terms to include may be used instead.
							 | 
						||
| 
								 | 
							
								    rcond : float, optional
							 | 
						||
| 
								 | 
							
								        Relative condition number of the fit. Singular values smaller than
							 | 
						||
| 
								 | 
							
								        this relative to the largest singular value will be ignored. The
							 | 
						||
| 
								 | 
							
								        default value is len(x)*eps, where eps is the relative precision of
							 | 
						||
| 
								 | 
							
								        the float type, about 2e-16 in most cases.
							 | 
						||
| 
								 | 
							
								    full : bool, optional
							 | 
						||
| 
								 | 
							
								        Switch determining nature of return value. When it is False (the
							 | 
						||
| 
								 | 
							
								        default) just the coefficients are returned, when True diagnostic
							 | 
						||
| 
								 | 
							
								        information from the singular value decomposition is also returned.
							 | 
						||
| 
								 | 
							
								    w : array_like, shape (`M`,), optional
							 | 
						||
| 
								 | 
							
								        Weights. If not None, the weight ``w[i]`` applies to the unsquared
							 | 
						||
| 
								 | 
							
								        residual ``y[i] - y_hat[i]`` at ``x[i]``. Ideally the weights are
							 | 
						||
| 
								 | 
							
								        chosen so that the errors of the products ``w[i]*y[i]`` all have the
							 | 
						||
| 
								 | 
							
								        same variance.  When using inverse-variance weighting, use
							 | 
						||
| 
								 | 
							
								        ``w[i] = 1/sigma(y[i])``.  The default value is None.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Returns
							 | 
						||
| 
								 | 
							
								    -------
							 | 
						||
| 
								 | 
							
								    coef : ndarray, shape (M,) or (M, K)
							 | 
						||
| 
								 | 
							
								        Laguerre coefficients ordered from low to high. If `y` was 2-D,
							 | 
						||
| 
								 | 
							
								        the coefficients for the data in column *k*  of `y` are in column
							 | 
						||
| 
								 | 
							
								        *k*.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    [residuals, rank, singular_values, rcond] : list
							 | 
						||
| 
								 | 
							
								        These values are only returned if ``full == True``
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        - residuals -- sum of squared residuals of the least squares fit
							 | 
						||
| 
								 | 
							
								        - rank -- the numerical rank of the scaled Vandermonde matrix
							 | 
						||
| 
								 | 
							
								        - singular_values -- singular values of the scaled Vandermonde matrix
							 | 
						||
| 
								 | 
							
								        - rcond -- value of `rcond`.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        For more details, see `numpy.linalg.lstsq`.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Warns
							 | 
						||
| 
								 | 
							
								    -----
							 | 
						||
| 
								 | 
							
								    RankWarning
							 | 
						||
| 
								 | 
							
								        The rank of the coefficient matrix in the least-squares fit is
							 | 
						||
| 
								 | 
							
								        deficient. The warning is only raised if ``full == False``.  The
							 | 
						||
| 
								 | 
							
								        warnings can be turned off by
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        >>> import warnings
							 | 
						||
| 
								 | 
							
								        >>> warnings.simplefilter('ignore', np.RankWarning)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    See Also
							 | 
						||
| 
								 | 
							
								    --------
							 | 
						||
| 
								 | 
							
								    numpy.polynomial.polynomial.polyfit
							 | 
						||
| 
								 | 
							
								    numpy.polynomial.legendre.legfit
							 | 
						||
| 
								 | 
							
								    numpy.polynomial.chebyshev.chebfit
							 | 
						||
| 
								 | 
							
								    numpy.polynomial.hermite.hermfit
							 | 
						||
| 
								 | 
							
								    numpy.polynomial.hermite_e.hermefit
							 | 
						||
| 
								 | 
							
								    lagval : Evaluates a Laguerre series.
							 | 
						||
| 
								 | 
							
								    lagvander : pseudo Vandermonde matrix of Laguerre series.
							 | 
						||
| 
								 | 
							
								    lagweight : Laguerre weight function.
							 | 
						||
| 
								 | 
							
								    numpy.linalg.lstsq : Computes a least-squares fit from the matrix.
							 | 
						||
| 
								 | 
							
								    scipy.interpolate.UnivariateSpline : Computes spline fits.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Notes
							 | 
						||
| 
								 | 
							
								    -----
							 | 
						||
| 
								 | 
							
								    The solution is the coefficients of the Laguerre series ``p`` that
							 | 
						||
| 
								 | 
							
								    minimizes the sum of the weighted squared errors
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    .. math:: E = \\sum_j w_j^2 * |y_j - p(x_j)|^2,
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    where the :math:`w_j` are the weights. This problem is solved by
							 | 
						||
| 
								 | 
							
								    setting up as the (typically) overdetermined matrix equation
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    .. math:: V(x) * c = w * y,
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    where ``V`` is the weighted pseudo Vandermonde matrix of `x`, ``c`` are the
							 | 
						||
| 
								 | 
							
								    coefficients to be solved for, `w` are the weights, and `y` are the
							 | 
						||
| 
								 | 
							
								    observed values.  This equation is then solved using the singular value
							 | 
						||
| 
								 | 
							
								    decomposition of ``V``.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    If some of the singular values of `V` are so small that they are
							 | 
						||
| 
								 | 
							
								    neglected, then a `RankWarning` will be issued. This means that the
							 | 
						||
| 
								 | 
							
								    coefficient values may be poorly determined. Using a lower order fit
							 | 
						||
| 
								 | 
							
								    will usually get rid of the warning.  The `rcond` parameter can also be
							 | 
						||
| 
								 | 
							
								    set to a value smaller than its default, but the resulting fit may be
							 | 
						||
| 
								 | 
							
								    spurious and have large contributions from roundoff error.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Fits using Laguerre series are probably most useful when the data can
							 | 
						||
| 
								 | 
							
								    be approximated by ``sqrt(w(x)) * p(x)``, where ``w(x)`` is the Laguerre
							 | 
						||
| 
								 | 
							
								    weight. In that case the weight ``sqrt(w(x[i]))`` should be used
							 | 
						||
| 
								 | 
							
								    together with data values ``y[i]/sqrt(w(x[i]))``. The weight function is
							 | 
						||
| 
								 | 
							
								    available as `lagweight`.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    References
							 | 
						||
| 
								 | 
							
								    ----------
							 | 
						||
| 
								 | 
							
								    .. [1] Wikipedia, "Curve fitting",
							 | 
						||
| 
								 | 
							
								           https://en.wikipedia.org/wiki/Curve_fitting
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Examples
							 | 
						||
| 
								 | 
							
								    --------
							 | 
						||
| 
								 | 
							
								    >>> from numpy.polynomial.laguerre import lagfit, lagval
							 | 
						||
| 
								 | 
							
								    >>> x = np.linspace(0, 10)
							 | 
						||
| 
								 | 
							
								    >>> err = np.random.randn(len(x))/10
							 | 
						||
| 
								 | 
							
								    >>> y = lagval(x, [1, 2, 3]) + err
							 | 
						||
| 
								 | 
							
								    >>> lagfit(x, y, 2)
							 | 
						||
| 
								 | 
							
								    array([ 0.96971004,  2.00193749,  3.00288744]) # may vary
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    return pu._fit(lagvander, x, y, deg, rcond, full, w)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def lagcompanion(c):
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    Return the companion matrix of c.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    The usual companion matrix of the Laguerre polynomials is already
							 | 
						||
| 
								 | 
							
								    symmetric when `c` is a basis Laguerre polynomial, so no scaling is
							 | 
						||
| 
								 | 
							
								    applied.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Parameters
							 | 
						||
| 
								 | 
							
								    ----------
							 | 
						||
| 
								 | 
							
								    c : array_like
							 | 
						||
| 
								 | 
							
								        1-D array of Laguerre series coefficients ordered from low to high
							 | 
						||
| 
								 | 
							
								        degree.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Returns
							 | 
						||
| 
								 | 
							
								    -------
							 | 
						||
| 
								 | 
							
								    mat : ndarray
							 | 
						||
| 
								 | 
							
								        Companion matrix of dimensions (deg, deg).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Notes
							 | 
						||
| 
								 | 
							
								    -----
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    .. versionadded:: 1.7.0
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    # c is a trimmed copy
							 | 
						||
| 
								 | 
							
								    [c] = pu.as_series([c])
							 | 
						||
| 
								 | 
							
								    if len(c) < 2:
							 | 
						||
| 
								 | 
							
								        raise ValueError('Series must have maximum degree of at least 1.')
							 | 
						||
| 
								 | 
							
								    if len(c) == 2:
							 | 
						||
| 
								 | 
							
								        return np.array([[1 + c[0]/c[1]]])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    n = len(c) - 1
							 | 
						||
| 
								 | 
							
								    mat = np.zeros((n, n), dtype=c.dtype)
							 | 
						||
| 
								 | 
							
								    top = mat.reshape(-1)[1::n+1]
							 | 
						||
| 
								 | 
							
								    mid = mat.reshape(-1)[0::n+1]
							 | 
						||
| 
								 | 
							
								    bot = mat.reshape(-1)[n::n+1]
							 | 
						||
| 
								 | 
							
								    top[...] = -np.arange(1, n)
							 | 
						||
| 
								 | 
							
								    mid[...] = 2.*np.arange(n) + 1.
							 | 
						||
| 
								 | 
							
								    bot[...] = top
							 | 
						||
| 
								 | 
							
								    mat[:, -1] += (c[:-1]/c[-1])*n
							 | 
						||
| 
								 | 
							
								    return mat
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def lagroots(c):
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    Compute the roots of a Laguerre series.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Return the roots (a.k.a. "zeros") of the polynomial
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    .. math:: p(x) = \\sum_i c[i] * L_i(x).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Parameters
							 | 
						||
| 
								 | 
							
								    ----------
							 | 
						||
| 
								 | 
							
								    c : 1-D array_like
							 | 
						||
| 
								 | 
							
								        1-D array of coefficients.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Returns
							 | 
						||
| 
								 | 
							
								    -------
							 | 
						||
| 
								 | 
							
								    out : ndarray
							 | 
						||
| 
								 | 
							
								        Array of the roots of the series. If all the roots are real,
							 | 
						||
| 
								 | 
							
								        then `out` is also real, otherwise it is complex.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    See Also
							 | 
						||
| 
								 | 
							
								    --------
							 | 
						||
| 
								 | 
							
								    numpy.polynomial.polynomial.polyroots
							 | 
						||
| 
								 | 
							
								    numpy.polynomial.legendre.legroots
							 | 
						||
| 
								 | 
							
								    numpy.polynomial.chebyshev.chebroots
							 | 
						||
| 
								 | 
							
								    numpy.polynomial.hermite.hermroots
							 | 
						||
| 
								 | 
							
								    numpy.polynomial.hermite_e.hermeroots
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Notes
							 | 
						||
| 
								 | 
							
								    -----
							 | 
						||
| 
								 | 
							
								    The root estimates are obtained as the eigenvalues of the companion
							 | 
						||
| 
								 | 
							
								    matrix, Roots far from the origin of the complex plane may have large
							 | 
						||
| 
								 | 
							
								    errors due to the numerical instability of the series for such
							 | 
						||
| 
								 | 
							
								    values. Roots with multiplicity greater than 1 will also show larger
							 | 
						||
| 
								 | 
							
								    errors as the value of the series near such points is relatively
							 | 
						||
| 
								 | 
							
								    insensitive to errors in the roots. Isolated roots near the origin can
							 | 
						||
| 
								 | 
							
								    be improved by a few iterations of Newton's method.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    The Laguerre series basis polynomials aren't powers of `x` so the
							 | 
						||
| 
								 | 
							
								    results of this function may seem unintuitive.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Examples
							 | 
						||
| 
								 | 
							
								    --------
							 | 
						||
| 
								 | 
							
								    >>> from numpy.polynomial.laguerre import lagroots, lagfromroots
							 | 
						||
| 
								 | 
							
								    >>> coef = lagfromroots([0, 1, 2])
							 | 
						||
| 
								 | 
							
								    >>> coef
							 | 
						||
| 
								 | 
							
								    array([  2.,  -8.,  12.,  -6.])
							 | 
						||
| 
								 | 
							
								    >>> lagroots(coef)
							 | 
						||
| 
								 | 
							
								    array([-4.4408921e-16,  1.0000000e+00,  2.0000000e+00])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    # c is a trimmed copy
							 | 
						||
| 
								 | 
							
								    [c] = pu.as_series([c])
							 | 
						||
| 
								 | 
							
								    if len(c) <= 1:
							 | 
						||
| 
								 | 
							
								        return np.array([], dtype=c.dtype)
							 | 
						||
| 
								 | 
							
								    if len(c) == 2:
							 | 
						||
| 
								 | 
							
								        return np.array([1 + c[0]/c[1]])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    # rotated companion matrix reduces error
							 | 
						||
| 
								 | 
							
								    m = lagcompanion(c)[::-1,::-1]
							 | 
						||
| 
								 | 
							
								    r = la.eigvals(m)
							 | 
						||
| 
								 | 
							
								    r.sort()
							 | 
						||
| 
								 | 
							
								    return r
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def laggauss(deg):
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    Gauss-Laguerre quadrature.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Computes the sample points and weights for Gauss-Laguerre quadrature.
							 | 
						||
| 
								 | 
							
								    These sample points and weights will correctly integrate polynomials of
							 | 
						||
| 
								 | 
							
								    degree :math:`2*deg - 1` or less over the interval :math:`[0, \\inf]`
							 | 
						||
| 
								 | 
							
								    with the weight function :math:`f(x) = \\exp(-x)`.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Parameters
							 | 
						||
| 
								 | 
							
								    ----------
							 | 
						||
| 
								 | 
							
								    deg : int
							 | 
						||
| 
								 | 
							
								        Number of sample points and weights. It must be >= 1.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Returns
							 | 
						||
| 
								 | 
							
								    -------
							 | 
						||
| 
								 | 
							
								    x : ndarray
							 | 
						||
| 
								 | 
							
								        1-D ndarray containing the sample points.
							 | 
						||
| 
								 | 
							
								    y : ndarray
							 | 
						||
| 
								 | 
							
								        1-D ndarray containing the weights.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Notes
							 | 
						||
| 
								 | 
							
								    -----
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    .. versionadded:: 1.7.0
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    The results have only been tested up to degree 100 higher degrees may
							 | 
						||
| 
								 | 
							
								    be problematic. The weights are determined by using the fact that
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    .. math:: w_k = c / (L'_n(x_k) * L_{n-1}(x_k))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    where :math:`c` is a constant independent of :math:`k` and :math:`x_k`
							 | 
						||
| 
								 | 
							
								    is the k'th root of :math:`L_n`, and then scaling the results to get
							 | 
						||
| 
								 | 
							
								    the right value when integrating 1.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    ideg = pu._deprecate_as_int(deg, "deg")
							 | 
						||
| 
								 | 
							
								    if ideg <= 0:
							 | 
						||
| 
								 | 
							
								        raise ValueError("deg must be a positive integer")
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    # first approximation of roots. We use the fact that the companion
							 | 
						||
| 
								 | 
							
								    # matrix is symmetric in this case in order to obtain better zeros.
							 | 
						||
| 
								 | 
							
								    c = np.array([0]*deg + [1])
							 | 
						||
| 
								 | 
							
								    m = lagcompanion(c)
							 | 
						||
| 
								 | 
							
								    x = la.eigvalsh(m)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    # improve roots by one application of Newton
							 | 
						||
| 
								 | 
							
								    dy = lagval(x, c)
							 | 
						||
| 
								 | 
							
								    df = lagval(x, lagder(c))
							 | 
						||
| 
								 | 
							
								    x -= dy/df
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    # compute the weights. We scale the factor to avoid possible numerical
							 | 
						||
| 
								 | 
							
								    # overflow.
							 | 
						||
| 
								 | 
							
								    fm = lagval(x, c[1:])
							 | 
						||
| 
								 | 
							
								    fm /= np.abs(fm).max()
							 | 
						||
| 
								 | 
							
								    df /= np.abs(df).max()
							 | 
						||
| 
								 | 
							
								    w = 1/(fm * df)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    # scale w to get the right value, 1 in this case
							 | 
						||
| 
								 | 
							
								    w /= w.sum()
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    return x, w
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def lagweight(x):
							 | 
						||
| 
								 | 
							
								    """Weight function of the Laguerre polynomials.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    The weight function is :math:`exp(-x)` and the interval of integration
							 | 
						||
| 
								 | 
							
								    is :math:`[0, \\inf]`. The Laguerre polynomials are orthogonal, but not
							 | 
						||
| 
								 | 
							
								    normalized, with respect to this weight function.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Parameters
							 | 
						||
| 
								 | 
							
								    ----------
							 | 
						||
| 
								 | 
							
								    x : array_like
							 | 
						||
| 
								 | 
							
								       Values at which the weight function will be computed.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Returns
							 | 
						||
| 
								 | 
							
								    -------
							 | 
						||
| 
								 | 
							
								    w : ndarray
							 | 
						||
| 
								 | 
							
								       The weight function at `x`.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Notes
							 | 
						||
| 
								 | 
							
								    -----
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    .. versionadded:: 1.7.0
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    w = np.exp(-x)
							 | 
						||
| 
								 | 
							
								    return w
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#
							 | 
						||
| 
								 | 
							
								# Laguerre series class
							 | 
						||
| 
								 | 
							
								#
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class Laguerre(ABCPolyBase):
							 | 
						||
| 
								 | 
							
								    """A Laguerre series class.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    The Laguerre class provides the standard Python numerical methods
							 | 
						||
| 
								 | 
							
								    '+', '-', '*', '//', '%', 'divmod', '**', and '()' as well as the
							 | 
						||
| 
								 | 
							
								    attributes and methods listed in the `ABCPolyBase` documentation.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Parameters
							 | 
						||
| 
								 | 
							
								    ----------
							 | 
						||
| 
								 | 
							
								    coef : array_like
							 | 
						||
| 
								 | 
							
								        Laguerre coefficients in order of increasing degree, i.e,
							 | 
						||
| 
								 | 
							
								        ``(1, 2, 3)`` gives ``1*L_0(x) + 2*L_1(X) + 3*L_2(x)``.
							 | 
						||
| 
								 | 
							
								    domain : (2,) array_like, optional
							 | 
						||
| 
								 | 
							
								        Domain to use. The interval ``[domain[0], domain[1]]`` is mapped
							 | 
						||
| 
								 | 
							
								        to the interval ``[window[0], window[1]]`` by shifting and scaling.
							 | 
						||
| 
								 | 
							
								        The default value is [0, 1].
							 | 
						||
| 
								 | 
							
								    window : (2,) array_like, optional
							 | 
						||
| 
								 | 
							
								        Window, see `domain` for its use. The default value is [0, 1].
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        .. versionadded:: 1.6.0
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    # Virtual Functions
							 | 
						||
| 
								 | 
							
								    _add = staticmethod(lagadd)
							 | 
						||
| 
								 | 
							
								    _sub = staticmethod(lagsub)
							 | 
						||
| 
								 | 
							
								    _mul = staticmethod(lagmul)
							 | 
						||
| 
								 | 
							
								    _div = staticmethod(lagdiv)
							 | 
						||
| 
								 | 
							
								    _pow = staticmethod(lagpow)
							 | 
						||
| 
								 | 
							
								    _val = staticmethod(lagval)
							 | 
						||
| 
								 | 
							
								    _int = staticmethod(lagint)
							 | 
						||
| 
								 | 
							
								    _der = staticmethod(lagder)
							 | 
						||
| 
								 | 
							
								    _fit = staticmethod(lagfit)
							 | 
						||
| 
								 | 
							
								    _line = staticmethod(lagline)
							 | 
						||
| 
								 | 
							
								    _roots = staticmethod(lagroots)
							 | 
						||
| 
								 | 
							
								    _fromroots = staticmethod(lagfromroots)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    # Virtual properties
							 | 
						||
| 
								 | 
							
								    domain = np.array(lagdomain)
							 | 
						||
| 
								 | 
							
								    window = np.array(lagdomain)
							 | 
						||
| 
								 | 
							
								    basis_name = 'L'
							 |