You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					639 lines
				
				21 KiB
			
		
		
			
		
	
	
					639 lines
				
				21 KiB
			| 
								 
											3 years ago
										 
									 | 
							
								from collections.abc import Callable
							 | 
						||
| 
								 | 
							
								from typing import Any, Union, overload, TypeVar, Literal
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								from numpy import (
							 | 
						||
| 
								 | 
							
								    bool_,
							 | 
						||
| 
								 | 
							
								    dtype,
							 | 
						||
| 
								 | 
							
								    float32,
							 | 
						||
| 
								 | 
							
								    float64,
							 | 
						||
| 
								 | 
							
								    int8,
							 | 
						||
| 
								 | 
							
								    int16,
							 | 
						||
| 
								 | 
							
								    int32,
							 | 
						||
| 
								 | 
							
								    int64,
							 | 
						||
| 
								 | 
							
								    int_,
							 | 
						||
| 
								 | 
							
								    ndarray,
							 | 
						||
| 
								 | 
							
								    uint,
							 | 
						||
| 
								 | 
							
								    uint8,
							 | 
						||
| 
								 | 
							
								    uint16,
							 | 
						||
| 
								 | 
							
								    uint32,
							 | 
						||
| 
								 | 
							
								    uint64,
							 | 
						||
| 
								 | 
							
								)
							 | 
						||
| 
								 | 
							
								from numpy.random import BitGenerator, SeedSequence
							 | 
						||
| 
								 | 
							
								from numpy._typing import (
							 | 
						||
| 
								 | 
							
								    ArrayLike,
							 | 
						||
| 
								 | 
							
								    _ArrayLikeFloat_co,
							 | 
						||
| 
								 | 
							
								    _ArrayLikeInt_co,
							 | 
						||
| 
								 | 
							
								    _DoubleCodes,
							 | 
						||
| 
								 | 
							
								    _DTypeLikeBool,
							 | 
						||
| 
								 | 
							
								    _DTypeLikeInt,
							 | 
						||
| 
								 | 
							
								    _DTypeLikeUInt,
							 | 
						||
| 
								 | 
							
								    _Float32Codes,
							 | 
						||
| 
								 | 
							
								    _Float64Codes,
							 | 
						||
| 
								 | 
							
								    _Int8Codes,
							 | 
						||
| 
								 | 
							
								    _Int16Codes,
							 | 
						||
| 
								 | 
							
								    _Int32Codes,
							 | 
						||
| 
								 | 
							
								    _Int64Codes,
							 | 
						||
| 
								 | 
							
								    _IntCodes,
							 | 
						||
| 
								 | 
							
								    _ShapeLike,
							 | 
						||
| 
								 | 
							
								    _SingleCodes,
							 | 
						||
| 
								 | 
							
								    _SupportsDType,
							 | 
						||
| 
								 | 
							
								    _UInt8Codes,
							 | 
						||
| 
								 | 
							
								    _UInt16Codes,
							 | 
						||
| 
								 | 
							
								    _UInt32Codes,
							 | 
						||
| 
								 | 
							
								    _UInt64Codes,
							 | 
						||
| 
								 | 
							
								    _UIntCodes,
							 | 
						||
| 
								 | 
							
								)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								_ArrayType = TypeVar("_ArrayType", bound=ndarray[Any, Any])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								_DTypeLikeFloat32 = Union[
							 | 
						||
| 
								 | 
							
								    dtype[float32],
							 | 
						||
| 
								 | 
							
								    _SupportsDType[dtype[float32]],
							 | 
						||
| 
								 | 
							
								    type[float32],
							 | 
						||
| 
								 | 
							
								    _Float32Codes,
							 | 
						||
| 
								 | 
							
								    _SingleCodes,
							 | 
						||
| 
								 | 
							
								]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								_DTypeLikeFloat64 = Union[
							 | 
						||
| 
								 | 
							
								    dtype[float64],
							 | 
						||
| 
								 | 
							
								    _SupportsDType[dtype[float64]],
							 | 
						||
| 
								 | 
							
								    type[float],
							 | 
						||
| 
								 | 
							
								    type[float64],
							 | 
						||
| 
								 | 
							
								    _Float64Codes,
							 | 
						||
| 
								 | 
							
								    _DoubleCodes,
							 | 
						||
| 
								 | 
							
								]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class Generator:
							 | 
						||
| 
								 | 
							
								    def __init__(self, bit_generator: BitGenerator) -> None: ...
							 | 
						||
| 
								 | 
							
								    def __repr__(self) -> str: ...
							 | 
						||
| 
								 | 
							
								    def __str__(self) -> str: ...
							 | 
						||
| 
								 | 
							
								    def __getstate__(self) -> dict[str, Any]: ...
							 | 
						||
| 
								 | 
							
								    def __setstate__(self, state: dict[str, Any]) -> None: ...
							 | 
						||
| 
								 | 
							
								    def __reduce__(self) -> tuple[Callable[[str], Generator], tuple[str], dict[str, Any]]: ...
							 | 
						||
| 
								 | 
							
								    @property
							 | 
						||
| 
								 | 
							
								    def bit_generator(self) -> BitGenerator: ...
							 | 
						||
| 
								 | 
							
								    def bytes(self, length: int) -> bytes: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def standard_normal(  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								        self,
							 | 
						||
| 
								 | 
							
								        size: None = ...,
							 | 
						||
| 
								 | 
							
								        dtype: _DTypeLikeFloat32 | _DTypeLikeFloat64 = ...,
							 | 
						||
| 
								 | 
							
								        out: None = ...,
							 | 
						||
| 
								 | 
							
								    ) -> float: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def standard_normal(  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								        self,
							 | 
						||
| 
								 | 
							
								        size: _ShapeLike = ...,
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[float64]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def standard_normal(  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								        self,
							 | 
						||
| 
								 | 
							
								        *,
							 | 
						||
| 
								 | 
							
								        out: ndarray[Any, dtype[float64]] = ...,
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[float64]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def standard_normal(  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								        self,
							 | 
						||
| 
								 | 
							
								        size: _ShapeLike = ...,
							 | 
						||
| 
								 | 
							
								        dtype: _DTypeLikeFloat32 = ...,
							 | 
						||
| 
								 | 
							
								        out: None | ndarray[Any, dtype[float32]] = ...,
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[float32]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def standard_normal(  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								        self,
							 | 
						||
| 
								 | 
							
								        size: _ShapeLike = ...,
							 | 
						||
| 
								 | 
							
								        dtype: _DTypeLikeFloat64 = ...,
							 | 
						||
| 
								 | 
							
								        out: None | ndarray[Any, dtype[float64]] = ...,
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[float64]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def permutation(self, x: int, axis: int = ...) -> ndarray[Any, dtype[int64]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def permutation(self, x: ArrayLike, axis: int = ...) -> ndarray[Any, Any]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def standard_exponential(  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								        self,
							 | 
						||
| 
								 | 
							
								        size: None = ...,
							 | 
						||
| 
								 | 
							
								        dtype: _DTypeLikeFloat32 | _DTypeLikeFloat64 = ...,
							 | 
						||
| 
								 | 
							
								        method: Literal["zig", "inv"] = ...,
							 | 
						||
| 
								 | 
							
								        out: None = ...,
							 | 
						||
| 
								 | 
							
								    ) -> float: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def standard_exponential(
							 | 
						||
| 
								 | 
							
								        self,
							 | 
						||
| 
								 | 
							
								        size: _ShapeLike = ...,
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[float64]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def standard_exponential(
							 | 
						||
| 
								 | 
							
								        self,
							 | 
						||
| 
								 | 
							
								        *,
							 | 
						||
| 
								 | 
							
								        out: ndarray[Any, dtype[float64]] = ...,
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[float64]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def standard_exponential(
							 | 
						||
| 
								 | 
							
								        self,
							 | 
						||
| 
								 | 
							
								        size: _ShapeLike = ...,
							 | 
						||
| 
								 | 
							
								        *,
							 | 
						||
| 
								 | 
							
								        method: Literal["zig", "inv"] = ...,
							 | 
						||
| 
								 | 
							
								        out: None | ndarray[Any, dtype[float64]] = ...,
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[float64]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def standard_exponential(
							 | 
						||
| 
								 | 
							
								        self,
							 | 
						||
| 
								 | 
							
								        size: _ShapeLike = ...,
							 | 
						||
| 
								 | 
							
								        dtype: _DTypeLikeFloat32 = ...,
							 | 
						||
| 
								 | 
							
								        method: Literal["zig", "inv"] = ...,
							 | 
						||
| 
								 | 
							
								        out: None | ndarray[Any, dtype[float32]] = ...,
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[float32]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def standard_exponential(
							 | 
						||
| 
								 | 
							
								        self,
							 | 
						||
| 
								 | 
							
								        size: _ShapeLike = ...,
							 | 
						||
| 
								 | 
							
								        dtype: _DTypeLikeFloat64 = ...,
							 | 
						||
| 
								 | 
							
								        method: Literal["zig", "inv"] = ...,
							 | 
						||
| 
								 | 
							
								        out: None | ndarray[Any, dtype[float64]] = ...,
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[float64]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def random(  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								        self,
							 | 
						||
| 
								 | 
							
								        size: None = ...,
							 | 
						||
| 
								 | 
							
								        dtype: _DTypeLikeFloat32 | _DTypeLikeFloat64 = ...,
							 | 
						||
| 
								 | 
							
								        out: None = ...,
							 | 
						||
| 
								 | 
							
								    ) -> float: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def random(
							 | 
						||
| 
								 | 
							
								        self,
							 | 
						||
| 
								 | 
							
								        *,
							 | 
						||
| 
								 | 
							
								        out: ndarray[Any, dtype[float64]] = ...,
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[float64]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def random(
							 | 
						||
| 
								 | 
							
								        self,
							 | 
						||
| 
								 | 
							
								        size: _ShapeLike = ...,
							 | 
						||
| 
								 | 
							
								        *,
							 | 
						||
| 
								 | 
							
								        out: None | ndarray[Any, dtype[float64]] = ...,
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[float64]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def random(
							 | 
						||
| 
								 | 
							
								        self,
							 | 
						||
| 
								 | 
							
								        size: _ShapeLike = ...,
							 | 
						||
| 
								 | 
							
								        dtype: _DTypeLikeFloat32 = ...,
							 | 
						||
| 
								 | 
							
								        out: None | ndarray[Any, dtype[float32]] = ...,
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[float32]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def random(
							 | 
						||
| 
								 | 
							
								        self,
							 | 
						||
| 
								 | 
							
								        size: _ShapeLike = ...,
							 | 
						||
| 
								 | 
							
								        dtype: _DTypeLikeFloat64 = ...,
							 | 
						||
| 
								 | 
							
								        out: None | ndarray[Any, dtype[float64]] = ...,
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[float64]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def beta(self, a: float, b: float, size: None = ...) -> float: ...  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def beta(
							 | 
						||
| 
								 | 
							
								        self, a: _ArrayLikeFloat_co, b: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[float64]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def exponential(self, scale: float = ..., size: None = ...) -> float: ...  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def exponential(
							 | 
						||
| 
								 | 
							
								        self, scale: _ArrayLikeFloat_co = ..., size: None | _ShapeLike = ...
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[float64]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def integers(  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								        self,
							 | 
						||
| 
								 | 
							
								        low: int,
							 | 
						||
| 
								 | 
							
								        high: None | int = ...,
							 | 
						||
| 
								 | 
							
								    ) -> int: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def integers(  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								        self,
							 | 
						||
| 
								 | 
							
								        low: int,
							 | 
						||
| 
								 | 
							
								        high: None | int = ...,
							 | 
						||
| 
								 | 
							
								        size: None = ...,
							 | 
						||
| 
								 | 
							
								        dtype: _DTypeLikeBool = ...,
							 | 
						||
| 
								 | 
							
								        endpoint: bool = ...,
							 | 
						||
| 
								 | 
							
								    ) -> bool: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def integers(  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								        self,
							 | 
						||
| 
								 | 
							
								        low: int,
							 | 
						||
| 
								 | 
							
								        high: None | int = ...,
							 | 
						||
| 
								 | 
							
								        size: None = ...,
							 | 
						||
| 
								 | 
							
								        dtype: _DTypeLikeInt | _DTypeLikeUInt = ...,
							 | 
						||
| 
								 | 
							
								        endpoint: bool = ...,
							 | 
						||
| 
								 | 
							
								    ) -> int: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def integers(  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								        self,
							 | 
						||
| 
								 | 
							
								        low: _ArrayLikeInt_co,
							 | 
						||
| 
								 | 
							
								        high: None | _ArrayLikeInt_co = ...,
							 | 
						||
| 
								 | 
							
								        size: None | _ShapeLike = ...,
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[int64]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def integers(  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								        self,
							 | 
						||
| 
								 | 
							
								        low: _ArrayLikeInt_co,
							 | 
						||
| 
								 | 
							
								        high: None | _ArrayLikeInt_co = ...,
							 | 
						||
| 
								 | 
							
								        size: None | _ShapeLike = ...,
							 | 
						||
| 
								 | 
							
								        dtype: _DTypeLikeBool = ...,
							 | 
						||
| 
								 | 
							
								        endpoint: bool = ...,
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[bool_]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def integers(  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								        self,
							 | 
						||
| 
								 | 
							
								        low: _ArrayLikeInt_co,
							 | 
						||
| 
								 | 
							
								        high: None | _ArrayLikeInt_co = ...,
							 | 
						||
| 
								 | 
							
								        size: None | _ShapeLike = ...,
							 | 
						||
| 
								 | 
							
								        dtype: dtype[int8] | type[int8] | _Int8Codes | _SupportsDType[dtype[int8]] = ...,
							 | 
						||
| 
								 | 
							
								        endpoint: bool = ...,
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[int8]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def integers(  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								        self,
							 | 
						||
| 
								 | 
							
								        low: _ArrayLikeInt_co,
							 | 
						||
| 
								 | 
							
								        high: None | _ArrayLikeInt_co = ...,
							 | 
						||
| 
								 | 
							
								        size: None | _ShapeLike = ...,
							 | 
						||
| 
								 | 
							
								        dtype: dtype[int16] | type[int16] | _Int16Codes | _SupportsDType[dtype[int16]] = ...,
							 | 
						||
| 
								 | 
							
								        endpoint: bool = ...,
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[int16]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def integers(  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								        self,
							 | 
						||
| 
								 | 
							
								        low: _ArrayLikeInt_co,
							 | 
						||
| 
								 | 
							
								        high: None | _ArrayLikeInt_co = ...,
							 | 
						||
| 
								 | 
							
								        size: None | _ShapeLike = ...,
							 | 
						||
| 
								 | 
							
								        dtype: dtype[int32] | type[int32] | _Int32Codes | _SupportsDType[dtype[int32]] = ...,
							 | 
						||
| 
								 | 
							
								        endpoint: bool = ...,
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[int32]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def integers(  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								        self,
							 | 
						||
| 
								 | 
							
								        low: _ArrayLikeInt_co,
							 | 
						||
| 
								 | 
							
								        high: None | _ArrayLikeInt_co = ...,
							 | 
						||
| 
								 | 
							
								        size: None | _ShapeLike = ...,
							 | 
						||
| 
								 | 
							
								        dtype: None | dtype[int64] | type[int64] | _Int64Codes | _SupportsDType[dtype[int64]] = ...,
							 | 
						||
| 
								 | 
							
								        endpoint: bool = ...,
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[int64]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def integers(  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								        self,
							 | 
						||
| 
								 | 
							
								        low: _ArrayLikeInt_co,
							 | 
						||
| 
								 | 
							
								        high: None | _ArrayLikeInt_co = ...,
							 | 
						||
| 
								 | 
							
								        size: None | _ShapeLike = ...,
							 | 
						||
| 
								 | 
							
								        dtype: dtype[uint8] | type[uint8] | _UInt8Codes | _SupportsDType[dtype[uint8]] = ...,
							 | 
						||
| 
								 | 
							
								        endpoint: bool = ...,
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[uint8]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def integers(  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								        self,
							 | 
						||
| 
								 | 
							
								        low: _ArrayLikeInt_co,
							 | 
						||
| 
								 | 
							
								        high: None | _ArrayLikeInt_co = ...,
							 | 
						||
| 
								 | 
							
								        size: None | _ShapeLike = ...,
							 | 
						||
| 
								 | 
							
								        dtype: dtype[uint16] | type[uint16] | _UInt16Codes | _SupportsDType[dtype[uint16]] = ...,
							 | 
						||
| 
								 | 
							
								        endpoint: bool = ...,
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[uint16]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def integers(  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								        self,
							 | 
						||
| 
								 | 
							
								        low: _ArrayLikeInt_co,
							 | 
						||
| 
								 | 
							
								        high: None | _ArrayLikeInt_co = ...,
							 | 
						||
| 
								 | 
							
								        size: None | _ShapeLike = ...,
							 | 
						||
| 
								 | 
							
								        dtype: dtype[uint32] | type[uint32] | _UInt32Codes | _SupportsDType[dtype[uint32]] = ...,
							 | 
						||
| 
								 | 
							
								        endpoint: bool = ...,
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[uint32]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def integers(  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								        self,
							 | 
						||
| 
								 | 
							
								        low: _ArrayLikeInt_co,
							 | 
						||
| 
								 | 
							
								        high: None | _ArrayLikeInt_co = ...,
							 | 
						||
| 
								 | 
							
								        size: None | _ShapeLike = ...,
							 | 
						||
| 
								 | 
							
								        dtype: dtype[uint64] | type[uint64] | _UInt64Codes | _SupportsDType[dtype[uint64]] = ...,
							 | 
						||
| 
								 | 
							
								        endpoint: bool = ...,
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[uint64]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def integers(  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								        self,
							 | 
						||
| 
								 | 
							
								        low: _ArrayLikeInt_co,
							 | 
						||
| 
								 | 
							
								        high: None | _ArrayLikeInt_co = ...,
							 | 
						||
| 
								 | 
							
								        size: None | _ShapeLike = ...,
							 | 
						||
| 
								 | 
							
								        dtype: dtype[int_] | type[int] | type[int_] | _IntCodes | _SupportsDType[dtype[int_]] = ...,
							 | 
						||
| 
								 | 
							
								        endpoint: bool = ...,
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[int_]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def integers(  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								        self,
							 | 
						||
| 
								 | 
							
								        low: _ArrayLikeInt_co,
							 | 
						||
| 
								 | 
							
								        high: None | _ArrayLikeInt_co = ...,
							 | 
						||
| 
								 | 
							
								        size: None | _ShapeLike = ...,
							 | 
						||
| 
								 | 
							
								        dtype: dtype[uint] | type[uint] | _UIntCodes | _SupportsDType[dtype[uint]] = ...,
							 | 
						||
| 
								 | 
							
								        endpoint: bool = ...,
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[uint]]: ...
							 | 
						||
| 
								 | 
							
								    # TODO: Use a TypeVar _T here to get away from Any output?  Should be int->ndarray[Any,dtype[int64]], ArrayLike[_T] -> _T | ndarray[Any,Any]
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def choice(
							 | 
						||
| 
								 | 
							
								        self,
							 | 
						||
| 
								 | 
							
								        a: int,
							 | 
						||
| 
								 | 
							
								        size: None = ...,
							 | 
						||
| 
								 | 
							
								        replace: bool = ...,
							 | 
						||
| 
								 | 
							
								        p: None | _ArrayLikeFloat_co = ...,
							 | 
						||
| 
								 | 
							
								        axis: int = ...,
							 | 
						||
| 
								 | 
							
								        shuffle: bool = ...,
							 | 
						||
| 
								 | 
							
								    ) -> int: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def choice(
							 | 
						||
| 
								 | 
							
								        self,
							 | 
						||
| 
								 | 
							
								        a: int,
							 | 
						||
| 
								 | 
							
								        size: _ShapeLike = ...,
							 | 
						||
| 
								 | 
							
								        replace: bool = ...,
							 | 
						||
| 
								 | 
							
								        p: None | _ArrayLikeFloat_co = ...,
							 | 
						||
| 
								 | 
							
								        axis: int = ...,
							 | 
						||
| 
								 | 
							
								        shuffle: bool = ...,
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[int64]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def choice(
							 | 
						||
| 
								 | 
							
								        self,
							 | 
						||
| 
								 | 
							
								        a: ArrayLike,
							 | 
						||
| 
								 | 
							
								        size: None = ...,
							 | 
						||
| 
								 | 
							
								        replace: bool = ...,
							 | 
						||
| 
								 | 
							
								        p: None | _ArrayLikeFloat_co = ...,
							 | 
						||
| 
								 | 
							
								        axis: int = ...,
							 | 
						||
| 
								 | 
							
								        shuffle: bool = ...,
							 | 
						||
| 
								 | 
							
								    ) -> Any: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def choice(
							 | 
						||
| 
								 | 
							
								        self,
							 | 
						||
| 
								 | 
							
								        a: ArrayLike,
							 | 
						||
| 
								 | 
							
								        size: _ShapeLike = ...,
							 | 
						||
| 
								 | 
							
								        replace: bool = ...,
							 | 
						||
| 
								 | 
							
								        p: None | _ArrayLikeFloat_co = ...,
							 | 
						||
| 
								 | 
							
								        axis: int = ...,
							 | 
						||
| 
								 | 
							
								        shuffle: bool = ...,
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, Any]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def uniform(self, low: float = ..., high: float = ..., size: None = ...) -> float: ...  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def uniform(
							 | 
						||
| 
								 | 
							
								        self,
							 | 
						||
| 
								 | 
							
								        low: _ArrayLikeFloat_co = ...,
							 | 
						||
| 
								 | 
							
								        high: _ArrayLikeFloat_co = ...,
							 | 
						||
| 
								 | 
							
								        size: None | _ShapeLike = ...,
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[float64]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def normal(self, loc: float = ..., scale: float = ..., size: None = ...) -> float: ...  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def normal(
							 | 
						||
| 
								 | 
							
								        self,
							 | 
						||
| 
								 | 
							
								        loc: _ArrayLikeFloat_co = ...,
							 | 
						||
| 
								 | 
							
								        scale: _ArrayLikeFloat_co = ...,
							 | 
						||
| 
								 | 
							
								        size: None | _ShapeLike = ...,
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[float64]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def standard_gamma(  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								        self,
							 | 
						||
| 
								 | 
							
								        shape: float,
							 | 
						||
| 
								 | 
							
								        size: None = ...,
							 | 
						||
| 
								 | 
							
								        dtype: _DTypeLikeFloat32 | _DTypeLikeFloat64 = ...,
							 | 
						||
| 
								 | 
							
								        out: None = ...,
							 | 
						||
| 
								 | 
							
								    ) -> float: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def standard_gamma(
							 | 
						||
| 
								 | 
							
								        self,
							 | 
						||
| 
								 | 
							
								        shape: _ArrayLikeFloat_co,
							 | 
						||
| 
								 | 
							
								        size: None | _ShapeLike = ...,
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[float64]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def standard_gamma(
							 | 
						||
| 
								 | 
							
								        self,
							 | 
						||
| 
								 | 
							
								        shape: _ArrayLikeFloat_co,
							 | 
						||
| 
								 | 
							
								        *,
							 | 
						||
| 
								 | 
							
								        out: ndarray[Any, dtype[float64]] = ...,
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[float64]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def standard_gamma(
							 | 
						||
| 
								 | 
							
								        self,
							 | 
						||
| 
								 | 
							
								        shape: _ArrayLikeFloat_co,
							 | 
						||
| 
								 | 
							
								        size: None | _ShapeLike = ...,
							 | 
						||
| 
								 | 
							
								        dtype: _DTypeLikeFloat32 = ...,
							 | 
						||
| 
								 | 
							
								        out: None | ndarray[Any, dtype[float32]] = ...,
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[float32]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def standard_gamma(
							 | 
						||
| 
								 | 
							
								        self,
							 | 
						||
| 
								 | 
							
								        shape: _ArrayLikeFloat_co,
							 | 
						||
| 
								 | 
							
								        size: None | _ShapeLike = ...,
							 | 
						||
| 
								 | 
							
								        dtype: _DTypeLikeFloat64 = ...,
							 | 
						||
| 
								 | 
							
								        out: None | ndarray[Any, dtype[float64]] = ...,
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[float64]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def gamma(self, shape: float, scale: float = ..., size: None = ...) -> float: ...  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def gamma(
							 | 
						||
| 
								 | 
							
								        self,
							 | 
						||
| 
								 | 
							
								        shape: _ArrayLikeFloat_co,
							 | 
						||
| 
								 | 
							
								        scale: _ArrayLikeFloat_co = ...,
							 | 
						||
| 
								 | 
							
								        size: None | _ShapeLike = ...,
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[float64]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def f(self, dfnum: float, dfden: float, size: None = ...) -> float: ...  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def f(
							 | 
						||
| 
								 | 
							
								        self, dfnum: _ArrayLikeFloat_co, dfden: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[float64]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def noncentral_f(self, dfnum: float, dfden: float, nonc: float, size: None = ...) -> float: ...  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def noncentral_f(
							 | 
						||
| 
								 | 
							
								        self,
							 | 
						||
| 
								 | 
							
								        dfnum: _ArrayLikeFloat_co,
							 | 
						||
| 
								 | 
							
								        dfden: _ArrayLikeFloat_co,
							 | 
						||
| 
								 | 
							
								        nonc: _ArrayLikeFloat_co,
							 | 
						||
| 
								 | 
							
								        size: None | _ShapeLike = ...,
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[float64]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def chisquare(self, df: float, size: None = ...) -> float: ...  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def chisquare(
							 | 
						||
| 
								 | 
							
								        self, df: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[float64]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def noncentral_chisquare(self, df: float, nonc: float, size: None = ...) -> float: ...  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def noncentral_chisquare(
							 | 
						||
| 
								 | 
							
								        self, df: _ArrayLikeFloat_co, nonc: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[float64]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def standard_t(self, df: float, size: None = ...) -> float: ...  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def standard_t(
							 | 
						||
| 
								 | 
							
								        self, df: _ArrayLikeFloat_co, size: None = ...
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[float64]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def standard_t(
							 | 
						||
| 
								 | 
							
								        self, df: _ArrayLikeFloat_co, size: _ShapeLike = ...
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[float64]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def vonmises(self, mu: float, kappa: float, size: None = ...) -> float: ...  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def vonmises(
							 | 
						||
| 
								 | 
							
								        self, mu: _ArrayLikeFloat_co, kappa: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[float64]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def pareto(self, a: float, size: None = ...) -> float: ...  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def pareto(
							 | 
						||
| 
								 | 
							
								        self, a: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[float64]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def weibull(self, a: float, size: None = ...) -> float: ...  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def weibull(
							 | 
						||
| 
								 | 
							
								        self, a: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[float64]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def power(self, a: float, size: None = ...) -> float: ...  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def power(
							 | 
						||
| 
								 | 
							
								        self, a: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[float64]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def standard_cauchy(self, size: None = ...) -> float: ...  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def standard_cauchy(self, size: _ShapeLike = ...) -> ndarray[Any, dtype[float64]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def laplace(self, loc: float = ..., scale: float = ..., size: None = ...) -> float: ...  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def laplace(
							 | 
						||
| 
								 | 
							
								        self,
							 | 
						||
| 
								 | 
							
								        loc: _ArrayLikeFloat_co = ...,
							 | 
						||
| 
								 | 
							
								        scale: _ArrayLikeFloat_co = ...,
							 | 
						||
| 
								 | 
							
								        size: None | _ShapeLike = ...,
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[float64]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def gumbel(self, loc: float = ..., scale: float = ..., size: None = ...) -> float: ...  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def gumbel(
							 | 
						||
| 
								 | 
							
								        self,
							 | 
						||
| 
								 | 
							
								        loc: _ArrayLikeFloat_co = ...,
							 | 
						||
| 
								 | 
							
								        scale: _ArrayLikeFloat_co = ...,
							 | 
						||
| 
								 | 
							
								        size: None | _ShapeLike = ...,
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[float64]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def logistic(self, loc: float = ..., scale: float = ..., size: None = ...) -> float: ...  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def logistic(
							 | 
						||
| 
								 | 
							
								        self,
							 | 
						||
| 
								 | 
							
								        loc: _ArrayLikeFloat_co = ...,
							 | 
						||
| 
								 | 
							
								        scale: _ArrayLikeFloat_co = ...,
							 | 
						||
| 
								 | 
							
								        size: None | _ShapeLike = ...,
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[float64]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def lognormal(self, mean: float = ..., sigma: float = ..., size: None = ...) -> float: ...  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def lognormal(
							 | 
						||
| 
								 | 
							
								        self,
							 | 
						||
| 
								 | 
							
								        mean: _ArrayLikeFloat_co = ...,
							 | 
						||
| 
								 | 
							
								        sigma: _ArrayLikeFloat_co = ...,
							 | 
						||
| 
								 | 
							
								        size: None | _ShapeLike = ...,
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[float64]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def rayleigh(self, scale: float = ..., size: None = ...) -> float: ...  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def rayleigh(
							 | 
						||
| 
								 | 
							
								        self, scale: _ArrayLikeFloat_co = ..., size: None | _ShapeLike = ...
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[float64]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def wald(self, mean: float, scale: float, size: None = ...) -> float: ...  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def wald(
							 | 
						||
| 
								 | 
							
								        self, mean: _ArrayLikeFloat_co, scale: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[float64]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def triangular(self, left: float, mode: float, right: float, size: None = ...) -> float: ...  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def triangular(
							 | 
						||
| 
								 | 
							
								        self,
							 | 
						||
| 
								 | 
							
								        left: _ArrayLikeFloat_co,
							 | 
						||
| 
								 | 
							
								        mode: _ArrayLikeFloat_co,
							 | 
						||
| 
								 | 
							
								        right: _ArrayLikeFloat_co,
							 | 
						||
| 
								 | 
							
								        size: None | _ShapeLike = ...,
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[float64]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def binomial(self, n: int, p: float, size: None = ...) -> int: ...  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def binomial(
							 | 
						||
| 
								 | 
							
								        self, n: _ArrayLikeInt_co, p: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[int64]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def negative_binomial(self, n: float, p: float, size: None = ...) -> int: ...  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def negative_binomial(
							 | 
						||
| 
								 | 
							
								        self, n: _ArrayLikeFloat_co, p: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[int64]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def poisson(self, lam: float = ..., size: None = ...) -> int: ...  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def poisson(
							 | 
						||
| 
								 | 
							
								        self, lam: _ArrayLikeFloat_co = ..., size: None | _ShapeLike = ...
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[int64]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def zipf(self, a: float, size: None = ...) -> int: ...  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def zipf(
							 | 
						||
| 
								 | 
							
								        self, a: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[int64]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def geometric(self, p: float, size: None = ...) -> int: ...  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def geometric(
							 | 
						||
| 
								 | 
							
								        self, p: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[int64]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def hypergeometric(self, ngood: int, nbad: int, nsample: int, size: None = ...) -> int: ...  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def hypergeometric(
							 | 
						||
| 
								 | 
							
								        self,
							 | 
						||
| 
								 | 
							
								        ngood: _ArrayLikeInt_co,
							 | 
						||
| 
								 | 
							
								        nbad: _ArrayLikeInt_co,
							 | 
						||
| 
								 | 
							
								        nsample: _ArrayLikeInt_co,
							 | 
						||
| 
								 | 
							
								        size: None | _ShapeLike = ...,
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[int64]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def logseries(self, p: float, size: None = ...) -> int: ...  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def logseries(
							 | 
						||
| 
								 | 
							
								        self, p: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[int64]]: ...
							 | 
						||
| 
								 | 
							
								    def multivariate_normal(
							 | 
						||
| 
								 | 
							
								        self,
							 | 
						||
| 
								 | 
							
								        mean: _ArrayLikeFloat_co,
							 | 
						||
| 
								 | 
							
								        cov: _ArrayLikeFloat_co,
							 | 
						||
| 
								 | 
							
								        size: None | _ShapeLike = ...,
							 | 
						||
| 
								 | 
							
								        check_valid: Literal["warn", "raise", "ignore"] = ...,
							 | 
						||
| 
								 | 
							
								        tol: float = ...,
							 | 
						||
| 
								 | 
							
								        *,
							 | 
						||
| 
								 | 
							
								        method: Literal["svd", "eigh", "cholesky"] = ...,
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[float64]]: ...
							 | 
						||
| 
								 | 
							
								    def multinomial(
							 | 
						||
| 
								 | 
							
								        self, n: _ArrayLikeInt_co,
							 | 
						||
| 
								 | 
							
								            pvals: _ArrayLikeFloat_co,
							 | 
						||
| 
								 | 
							
								            size: None | _ShapeLike = ...
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[int64]]: ...
							 | 
						||
| 
								 | 
							
								    def multivariate_hypergeometric(
							 | 
						||
| 
								 | 
							
								        self,
							 | 
						||
| 
								 | 
							
								        colors: _ArrayLikeInt_co,
							 | 
						||
| 
								 | 
							
								        nsample: int,
							 | 
						||
| 
								 | 
							
								        size: None | _ShapeLike = ...,
							 | 
						||
| 
								 | 
							
								        method: Literal["marginals", "count"] = ...,
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[int64]]: ...
							 | 
						||
| 
								 | 
							
								    def dirichlet(
							 | 
						||
| 
								 | 
							
								        self, alpha: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[float64]]: ...
							 | 
						||
| 
								 | 
							
								    def permuted(
							 | 
						||
| 
								 | 
							
								        self, x: ArrayLike, *, axis: None | int = ..., out: None | ndarray[Any, Any] = ...
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, Any]: ...
							 | 
						||
| 
								 | 
							
								    def shuffle(self, x: ArrayLike, axis: int = ...) -> None: ...
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def default_rng(
							 | 
						||
| 
								 | 
							
								    seed: None | _ArrayLikeInt_co | SeedSequence | BitGenerator | Generator = ...
							 | 
						||
| 
								 | 
							
								) -> Generator: ...
							 |