You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					571 lines
				
				19 KiB
			
		
		
			
		
	
	
					571 lines
				
				19 KiB
			| 
								 
											3 years ago
										 
									 | 
							
								from collections.abc import Callable
							 | 
						||
| 
								 | 
							
								from typing import Any, Union, overload, Literal
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								from numpy import (
							 | 
						||
| 
								 | 
							
								    bool_,
							 | 
						||
| 
								 | 
							
								    dtype,
							 | 
						||
| 
								 | 
							
								    float32,
							 | 
						||
| 
								 | 
							
								    float64,
							 | 
						||
| 
								 | 
							
								    int8,
							 | 
						||
| 
								 | 
							
								    int16,
							 | 
						||
| 
								 | 
							
								    int32,
							 | 
						||
| 
								 | 
							
								    int64,
							 | 
						||
| 
								 | 
							
								    int_,
							 | 
						||
| 
								 | 
							
								    ndarray,
							 | 
						||
| 
								 | 
							
								    uint,
							 | 
						||
| 
								 | 
							
								    uint8,
							 | 
						||
| 
								 | 
							
								    uint16,
							 | 
						||
| 
								 | 
							
								    uint32,
							 | 
						||
| 
								 | 
							
								    uint64,
							 | 
						||
| 
								 | 
							
								)
							 | 
						||
| 
								 | 
							
								from numpy.random.bit_generator import BitGenerator
							 | 
						||
| 
								 | 
							
								from numpy._typing import (
							 | 
						||
| 
								 | 
							
								    ArrayLike,
							 | 
						||
| 
								 | 
							
								    _ArrayLikeFloat_co,
							 | 
						||
| 
								 | 
							
								    _ArrayLikeInt_co,
							 | 
						||
| 
								 | 
							
								    _DoubleCodes,
							 | 
						||
| 
								 | 
							
								    _DTypeLikeBool,
							 | 
						||
| 
								 | 
							
								    _DTypeLikeInt,
							 | 
						||
| 
								 | 
							
								    _DTypeLikeUInt,
							 | 
						||
| 
								 | 
							
								    _Float32Codes,
							 | 
						||
| 
								 | 
							
								    _Float64Codes,
							 | 
						||
| 
								 | 
							
								    _Int8Codes,
							 | 
						||
| 
								 | 
							
								    _Int16Codes,
							 | 
						||
| 
								 | 
							
								    _Int32Codes,
							 | 
						||
| 
								 | 
							
								    _Int64Codes,
							 | 
						||
| 
								 | 
							
								    _IntCodes,
							 | 
						||
| 
								 | 
							
								    _ShapeLike,
							 | 
						||
| 
								 | 
							
								    _SingleCodes,
							 | 
						||
| 
								 | 
							
								    _SupportsDType,
							 | 
						||
| 
								 | 
							
								    _UInt8Codes,
							 | 
						||
| 
								 | 
							
								    _UInt16Codes,
							 | 
						||
| 
								 | 
							
								    _UInt32Codes,
							 | 
						||
| 
								 | 
							
								    _UInt64Codes,
							 | 
						||
| 
								 | 
							
								    _UIntCodes,
							 | 
						||
| 
								 | 
							
								)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								_DTypeLikeFloat32 = Union[
							 | 
						||
| 
								 | 
							
								    dtype[float32],
							 | 
						||
| 
								 | 
							
								    _SupportsDType[dtype[float32]],
							 | 
						||
| 
								 | 
							
								    type[float32],
							 | 
						||
| 
								 | 
							
								    _Float32Codes,
							 | 
						||
| 
								 | 
							
								    _SingleCodes,
							 | 
						||
| 
								 | 
							
								]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								_DTypeLikeFloat64 = Union[
							 | 
						||
| 
								 | 
							
								    dtype[float64],
							 | 
						||
| 
								 | 
							
								    _SupportsDType[dtype[float64]],
							 | 
						||
| 
								 | 
							
								    type[float],
							 | 
						||
| 
								 | 
							
								    type[float64],
							 | 
						||
| 
								 | 
							
								    _Float64Codes,
							 | 
						||
| 
								 | 
							
								    _DoubleCodes,
							 | 
						||
| 
								 | 
							
								]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class RandomState:
							 | 
						||
| 
								 | 
							
								    _bit_generator: BitGenerator
							 | 
						||
| 
								 | 
							
								    def __init__(self, seed: None | _ArrayLikeInt_co | BitGenerator = ...) -> None: ...
							 | 
						||
| 
								 | 
							
								    def __repr__(self) -> str: ...
							 | 
						||
| 
								 | 
							
								    def __str__(self) -> str: ...
							 | 
						||
| 
								 | 
							
								    def __getstate__(self) -> dict[str, Any]: ...
							 | 
						||
| 
								 | 
							
								    def __setstate__(self, state: dict[str, Any]) -> None: ...
							 | 
						||
| 
								 | 
							
								    def __reduce__(self) -> tuple[Callable[[str], RandomState], tuple[str], dict[str, Any]]: ...
							 | 
						||
| 
								 | 
							
								    def seed(self, seed: None | _ArrayLikeFloat_co = ...) -> None: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def get_state(self, legacy: Literal[False] = ...) -> dict[str, Any]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def get_state(
							 | 
						||
| 
								 | 
							
								        self, legacy: Literal[True] = ...
							 | 
						||
| 
								 | 
							
								    ) -> dict[str, Any] | tuple[str, ndarray[Any, dtype[uint32]], int, int, float]: ...
							 | 
						||
| 
								 | 
							
								    def set_state(
							 | 
						||
| 
								 | 
							
								        self, state: dict[str, Any] | tuple[str, ndarray[Any, dtype[uint32]], int, int, float]
							 | 
						||
| 
								 | 
							
								    ) -> None: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def random_sample(self, size: None = ...) -> float: ...  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def random_sample(self, size: _ShapeLike = ...) -> ndarray[Any, dtype[float64]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def random(self, size: None = ...) -> float: ...  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def random(self, size: _ShapeLike = ...) -> ndarray[Any, dtype[float64]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def beta(self, a: float, b: float, size: None = ...) -> float: ...  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def beta(
							 | 
						||
| 
								 | 
							
								        self, a: _ArrayLikeFloat_co, b: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[float64]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def exponential(self, scale: float = ..., size: None = ...) -> float: ...  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def exponential(
							 | 
						||
| 
								 | 
							
								        self, scale: _ArrayLikeFloat_co = ..., size: None | _ShapeLike = ...
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[float64]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def standard_exponential(self, size: None = ...) -> float: ...  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def standard_exponential(self, size: _ShapeLike = ...) -> ndarray[Any, dtype[float64]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def tomaxint(self, size: None = ...) -> int: ...  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def tomaxint(self, size: _ShapeLike = ...) -> ndarray[Any, dtype[int_]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def randint(  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								        self,
							 | 
						||
| 
								 | 
							
								        low: int,
							 | 
						||
| 
								 | 
							
								        high: None | int = ...,
							 | 
						||
| 
								 | 
							
								    ) -> int: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def randint(  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								        self,
							 | 
						||
| 
								 | 
							
								        low: int,
							 | 
						||
| 
								 | 
							
								        high: None | int = ...,
							 | 
						||
| 
								 | 
							
								        size: None = ...,
							 | 
						||
| 
								 | 
							
								        dtype: _DTypeLikeBool = ...,
							 | 
						||
| 
								 | 
							
								    ) -> bool: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def randint(  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								        self,
							 | 
						||
| 
								 | 
							
								        low: int,
							 | 
						||
| 
								 | 
							
								        high: None | int = ...,
							 | 
						||
| 
								 | 
							
								        size: None = ...,
							 | 
						||
| 
								 | 
							
								        dtype: _DTypeLikeInt | _DTypeLikeUInt = ...,
							 | 
						||
| 
								 | 
							
								    ) -> int: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def randint(  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								        self,
							 | 
						||
| 
								 | 
							
								        low: _ArrayLikeInt_co,
							 | 
						||
| 
								 | 
							
								        high: None | _ArrayLikeInt_co = ...,
							 | 
						||
| 
								 | 
							
								        size: None | _ShapeLike = ...,
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[int_]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def randint(  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								        self,
							 | 
						||
| 
								 | 
							
								        low: _ArrayLikeInt_co,
							 | 
						||
| 
								 | 
							
								        high: None | _ArrayLikeInt_co = ...,
							 | 
						||
| 
								 | 
							
								        size: None | _ShapeLike = ...,
							 | 
						||
| 
								 | 
							
								        dtype: _DTypeLikeBool = ...,
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[bool_]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def randint(  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								        self,
							 | 
						||
| 
								 | 
							
								        low: _ArrayLikeInt_co,
							 | 
						||
| 
								 | 
							
								        high: None | _ArrayLikeInt_co = ...,
							 | 
						||
| 
								 | 
							
								        size: None | _ShapeLike = ...,
							 | 
						||
| 
								 | 
							
								        dtype: dtype[int8] | type[int8] | _Int8Codes | _SupportsDType[dtype[int8]] = ...,
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[int8]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def randint(  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								        self,
							 | 
						||
| 
								 | 
							
								        low: _ArrayLikeInt_co,
							 | 
						||
| 
								 | 
							
								        high: None | _ArrayLikeInt_co = ...,
							 | 
						||
| 
								 | 
							
								        size: None | _ShapeLike = ...,
							 | 
						||
| 
								 | 
							
								        dtype: dtype[int16] | type[int16] | _Int16Codes | _SupportsDType[dtype[int16]] = ...,
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[int16]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def randint(  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								        self,
							 | 
						||
| 
								 | 
							
								        low: _ArrayLikeInt_co,
							 | 
						||
| 
								 | 
							
								        high: None | _ArrayLikeInt_co = ...,
							 | 
						||
| 
								 | 
							
								        size: None | _ShapeLike = ...,
							 | 
						||
| 
								 | 
							
								        dtype: dtype[int32] | type[int32] | _Int32Codes | _SupportsDType[dtype[int32]] = ...,
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[int32]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def randint(  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								        self,
							 | 
						||
| 
								 | 
							
								        low: _ArrayLikeInt_co,
							 | 
						||
| 
								 | 
							
								        high: None | _ArrayLikeInt_co = ...,
							 | 
						||
| 
								 | 
							
								        size: None | _ShapeLike = ...,
							 | 
						||
| 
								 | 
							
								        dtype: None | dtype[int64] | type[int64] | _Int64Codes | _SupportsDType[dtype[int64]] = ...,
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[int64]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def randint(  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								        self,
							 | 
						||
| 
								 | 
							
								        low: _ArrayLikeInt_co,
							 | 
						||
| 
								 | 
							
								        high: None | _ArrayLikeInt_co = ...,
							 | 
						||
| 
								 | 
							
								        size: None | _ShapeLike = ...,
							 | 
						||
| 
								 | 
							
								        dtype: dtype[uint8] | type[uint8] | _UInt8Codes | _SupportsDType[dtype[uint8]] = ...,
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[uint8]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def randint(  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								        self,
							 | 
						||
| 
								 | 
							
								        low: _ArrayLikeInt_co,
							 | 
						||
| 
								 | 
							
								        high: None | _ArrayLikeInt_co = ...,
							 | 
						||
| 
								 | 
							
								        size: None | _ShapeLike = ...,
							 | 
						||
| 
								 | 
							
								        dtype: dtype[uint16] | type[uint16] | _UInt16Codes | _SupportsDType[dtype[uint16]] = ...,
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[uint16]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def randint(  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								        self,
							 | 
						||
| 
								 | 
							
								        low: _ArrayLikeInt_co,
							 | 
						||
| 
								 | 
							
								        high: None | _ArrayLikeInt_co = ...,
							 | 
						||
| 
								 | 
							
								        size: None | _ShapeLike = ...,
							 | 
						||
| 
								 | 
							
								        dtype: dtype[uint32] | type[uint32] | _UInt32Codes | _SupportsDType[dtype[uint32]] = ...,
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[uint32]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def randint(  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								        self,
							 | 
						||
| 
								 | 
							
								        low: _ArrayLikeInt_co,
							 | 
						||
| 
								 | 
							
								        high: None | _ArrayLikeInt_co = ...,
							 | 
						||
| 
								 | 
							
								        size: None | _ShapeLike = ...,
							 | 
						||
| 
								 | 
							
								        dtype: dtype[uint64] | type[uint64] | _UInt64Codes | _SupportsDType[dtype[uint64]] = ...,
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[uint64]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def randint(  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								        self,
							 | 
						||
| 
								 | 
							
								        low: _ArrayLikeInt_co,
							 | 
						||
| 
								 | 
							
								        high: None | _ArrayLikeInt_co = ...,
							 | 
						||
| 
								 | 
							
								        size: None | _ShapeLike = ...,
							 | 
						||
| 
								 | 
							
								        dtype: dtype[int_] | type[int] | type[int_] | _IntCodes | _SupportsDType[dtype[int_]] = ...,
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[int_]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def randint(  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								        self,
							 | 
						||
| 
								 | 
							
								        low: _ArrayLikeInt_co,
							 | 
						||
| 
								 | 
							
								        high: None | _ArrayLikeInt_co = ...,
							 | 
						||
| 
								 | 
							
								        size: None | _ShapeLike = ...,
							 | 
						||
| 
								 | 
							
								        dtype: dtype[uint] | type[uint] | _UIntCodes | _SupportsDType[dtype[uint]] = ...,
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[uint]]: ...
							 | 
						||
| 
								 | 
							
								    def bytes(self, length: int) -> bytes: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def choice(
							 | 
						||
| 
								 | 
							
								        self,
							 | 
						||
| 
								 | 
							
								        a: int,
							 | 
						||
| 
								 | 
							
								        size: None = ...,
							 | 
						||
| 
								 | 
							
								        replace: bool = ...,
							 | 
						||
| 
								 | 
							
								        p: None | _ArrayLikeFloat_co = ...,
							 | 
						||
| 
								 | 
							
								    ) -> int: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def choice(
							 | 
						||
| 
								 | 
							
								        self,
							 | 
						||
| 
								 | 
							
								        a: int,
							 | 
						||
| 
								 | 
							
								        size: _ShapeLike = ...,
							 | 
						||
| 
								 | 
							
								        replace: bool = ...,
							 | 
						||
| 
								 | 
							
								        p: None | _ArrayLikeFloat_co = ...,
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[int_]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def choice(
							 | 
						||
| 
								 | 
							
								        self,
							 | 
						||
| 
								 | 
							
								        a: ArrayLike,
							 | 
						||
| 
								 | 
							
								        size: None = ...,
							 | 
						||
| 
								 | 
							
								        replace: bool = ...,
							 | 
						||
| 
								 | 
							
								        p: None | _ArrayLikeFloat_co = ...,
							 | 
						||
| 
								 | 
							
								    ) -> Any: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def choice(
							 | 
						||
| 
								 | 
							
								        self,
							 | 
						||
| 
								 | 
							
								        a: ArrayLike,
							 | 
						||
| 
								 | 
							
								        size: _ShapeLike = ...,
							 | 
						||
| 
								 | 
							
								        replace: bool = ...,
							 | 
						||
| 
								 | 
							
								        p: None | _ArrayLikeFloat_co = ...,
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, Any]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def uniform(self, low: float = ..., high: float = ..., size: None = ...) -> float: ...  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def uniform(
							 | 
						||
| 
								 | 
							
								        self,
							 | 
						||
| 
								 | 
							
								        low: _ArrayLikeFloat_co = ...,
							 | 
						||
| 
								 | 
							
								        high: _ArrayLikeFloat_co = ...,
							 | 
						||
| 
								 | 
							
								        size: None | _ShapeLike = ...,
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[float64]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def rand(self) -> float: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def rand(self, *args: int) -> ndarray[Any, dtype[float64]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def randn(self) -> float: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def randn(self, *args: int) -> ndarray[Any, dtype[float64]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def random_integers(self, low: int, high: None | int = ..., size: None = ...) -> int: ...  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def random_integers(
							 | 
						||
| 
								 | 
							
								        self,
							 | 
						||
| 
								 | 
							
								        low: _ArrayLikeInt_co,
							 | 
						||
| 
								 | 
							
								        high: None | _ArrayLikeInt_co = ...,
							 | 
						||
| 
								 | 
							
								        size: None | _ShapeLike = ...,
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[int_]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def standard_normal(self, size: None = ...) -> float: ...  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def standard_normal(  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								        self, size: _ShapeLike = ...
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[float64]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def normal(self, loc: float = ..., scale: float = ..., size: None = ...) -> float: ...  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def normal(
							 | 
						||
| 
								 | 
							
								        self,
							 | 
						||
| 
								 | 
							
								        loc: _ArrayLikeFloat_co = ...,
							 | 
						||
| 
								 | 
							
								        scale: _ArrayLikeFloat_co = ...,
							 | 
						||
| 
								 | 
							
								        size: None | _ShapeLike = ...,
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[float64]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def standard_gamma(  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								        self,
							 | 
						||
| 
								 | 
							
								        shape: float,
							 | 
						||
| 
								 | 
							
								        size: None = ...,
							 | 
						||
| 
								 | 
							
								    ) -> float: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def standard_gamma(
							 | 
						||
| 
								 | 
							
								        self,
							 | 
						||
| 
								 | 
							
								        shape: _ArrayLikeFloat_co,
							 | 
						||
| 
								 | 
							
								        size: None | _ShapeLike = ...,
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[float64]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def gamma(self, shape: float, scale: float = ..., size: None = ...) -> float: ...  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def gamma(
							 | 
						||
| 
								 | 
							
								        self,
							 | 
						||
| 
								 | 
							
								        shape: _ArrayLikeFloat_co,
							 | 
						||
| 
								 | 
							
								        scale: _ArrayLikeFloat_co = ...,
							 | 
						||
| 
								 | 
							
								        size: None | _ShapeLike = ...,
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[float64]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def f(self, dfnum: float, dfden: float, size: None = ...) -> float: ...  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def f(
							 | 
						||
| 
								 | 
							
								        self, dfnum: _ArrayLikeFloat_co, dfden: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[float64]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def noncentral_f(self, dfnum: float, dfden: float, nonc: float, size: None = ...) -> float: ...  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def noncentral_f(
							 | 
						||
| 
								 | 
							
								        self,
							 | 
						||
| 
								 | 
							
								        dfnum: _ArrayLikeFloat_co,
							 | 
						||
| 
								 | 
							
								        dfden: _ArrayLikeFloat_co,
							 | 
						||
| 
								 | 
							
								        nonc: _ArrayLikeFloat_co,
							 | 
						||
| 
								 | 
							
								        size: None | _ShapeLike = ...,
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[float64]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def chisquare(self, df: float, size: None = ...) -> float: ...  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def chisquare(
							 | 
						||
| 
								 | 
							
								        self, df: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[float64]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def noncentral_chisquare(self, df: float, nonc: float, size: None = ...) -> float: ...  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def noncentral_chisquare(
							 | 
						||
| 
								 | 
							
								        self, df: _ArrayLikeFloat_co, nonc: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[float64]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def standard_t(self, df: float, size: None = ...) -> float: ...  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def standard_t(
							 | 
						||
| 
								 | 
							
								        self, df: _ArrayLikeFloat_co, size: None = ...
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[float64]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def standard_t(
							 | 
						||
| 
								 | 
							
								        self, df: _ArrayLikeFloat_co, size: _ShapeLike = ...
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[float64]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def vonmises(self, mu: float, kappa: float, size: None = ...) -> float: ...  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def vonmises(
							 | 
						||
| 
								 | 
							
								        self, mu: _ArrayLikeFloat_co, kappa: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[float64]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def pareto(self, a: float, size: None = ...) -> float: ...  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def pareto(
							 | 
						||
| 
								 | 
							
								        self, a: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[float64]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def weibull(self, a: float, size: None = ...) -> float: ...  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def weibull(
							 | 
						||
| 
								 | 
							
								        self, a: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[float64]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def power(self, a: float, size: None = ...) -> float: ...  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def power(
							 | 
						||
| 
								 | 
							
								        self, a: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[float64]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def standard_cauchy(self, size: None = ...) -> float: ...  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def standard_cauchy(self, size: _ShapeLike = ...) -> ndarray[Any, dtype[float64]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def laplace(self, loc: float = ..., scale: float = ..., size: None = ...) -> float: ...  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def laplace(
							 | 
						||
| 
								 | 
							
								        self,
							 | 
						||
| 
								 | 
							
								        loc: _ArrayLikeFloat_co = ...,
							 | 
						||
| 
								 | 
							
								        scale: _ArrayLikeFloat_co = ...,
							 | 
						||
| 
								 | 
							
								        size: None | _ShapeLike = ...,
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[float64]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def gumbel(self, loc: float = ..., scale: float = ..., size: None = ...) -> float: ...  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def gumbel(
							 | 
						||
| 
								 | 
							
								        self,
							 | 
						||
| 
								 | 
							
								        loc: _ArrayLikeFloat_co = ...,
							 | 
						||
| 
								 | 
							
								        scale: _ArrayLikeFloat_co = ...,
							 | 
						||
| 
								 | 
							
								        size: None | _ShapeLike = ...,
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[float64]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def logistic(self, loc: float = ..., scale: float = ..., size: None = ...) -> float: ...  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def logistic(
							 | 
						||
| 
								 | 
							
								        self,
							 | 
						||
| 
								 | 
							
								        loc: _ArrayLikeFloat_co = ...,
							 | 
						||
| 
								 | 
							
								        scale: _ArrayLikeFloat_co = ...,
							 | 
						||
| 
								 | 
							
								        size: None | _ShapeLike = ...,
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[float64]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def lognormal(self, mean: float = ..., sigma: float = ..., size: None = ...) -> float: ...  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def lognormal(
							 | 
						||
| 
								 | 
							
								        self,
							 | 
						||
| 
								 | 
							
								        mean: _ArrayLikeFloat_co = ...,
							 | 
						||
| 
								 | 
							
								        sigma: _ArrayLikeFloat_co = ...,
							 | 
						||
| 
								 | 
							
								        size: None | _ShapeLike = ...,
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[float64]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def rayleigh(self, scale: float = ..., size: None = ...) -> float: ...  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def rayleigh(
							 | 
						||
| 
								 | 
							
								        self, scale: _ArrayLikeFloat_co = ..., size: None | _ShapeLike = ...
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[float64]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def wald(self, mean: float, scale: float, size: None = ...) -> float: ...  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def wald(
							 | 
						||
| 
								 | 
							
								        self, mean: _ArrayLikeFloat_co, scale: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[float64]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def triangular(self, left: float, mode: float, right: float, size: None = ...) -> float: ...  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def triangular(
							 | 
						||
| 
								 | 
							
								        self,
							 | 
						||
| 
								 | 
							
								        left: _ArrayLikeFloat_co,
							 | 
						||
| 
								 | 
							
								        mode: _ArrayLikeFloat_co,
							 | 
						||
| 
								 | 
							
								        right: _ArrayLikeFloat_co,
							 | 
						||
| 
								 | 
							
								        size: None | _ShapeLike = ...,
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[float64]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def binomial(self, n: int, p: float, size: None = ...) -> int: ...  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def binomial(
							 | 
						||
| 
								 | 
							
								        self, n: _ArrayLikeInt_co, p: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[int_]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def negative_binomial(self, n: float, p: float, size: None = ...) -> int: ...  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def negative_binomial(
							 | 
						||
| 
								 | 
							
								        self, n: _ArrayLikeFloat_co, p: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[int_]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def poisson(self, lam: float = ..., size: None = ...) -> int: ...  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def poisson(
							 | 
						||
| 
								 | 
							
								        self, lam: _ArrayLikeFloat_co = ..., size: None | _ShapeLike = ...
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[int_]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def zipf(self, a: float, size: None = ...) -> int: ...  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def zipf(
							 | 
						||
| 
								 | 
							
								        self, a: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[int_]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def geometric(self, p: float, size: None = ...) -> int: ...  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def geometric(
							 | 
						||
| 
								 | 
							
								        self, p: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[int_]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def hypergeometric(self, ngood: int, nbad: int, nsample: int, size: None = ...) -> int: ...  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def hypergeometric(
							 | 
						||
| 
								 | 
							
								        self,
							 | 
						||
| 
								 | 
							
								        ngood: _ArrayLikeInt_co,
							 | 
						||
| 
								 | 
							
								        nbad: _ArrayLikeInt_co,
							 | 
						||
| 
								 | 
							
								        nsample: _ArrayLikeInt_co,
							 | 
						||
| 
								 | 
							
								        size: None | _ShapeLike = ...,
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[int_]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def logseries(self, p: float, size: None = ...) -> int: ...  # type: ignore[misc]
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def logseries(
							 | 
						||
| 
								 | 
							
								        self, p: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[int_]]: ...
							 | 
						||
| 
								 | 
							
								    def multivariate_normal(
							 | 
						||
| 
								 | 
							
								        self,
							 | 
						||
| 
								 | 
							
								        mean: _ArrayLikeFloat_co,
							 | 
						||
| 
								 | 
							
								        cov: _ArrayLikeFloat_co,
							 | 
						||
| 
								 | 
							
								        size: None | _ShapeLike = ...,
							 | 
						||
| 
								 | 
							
								        check_valid: Literal["warn", "raise", "ignore"] = ...,
							 | 
						||
| 
								 | 
							
								        tol: float = ...,
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[float64]]: ...
							 | 
						||
| 
								 | 
							
								    def multinomial(
							 | 
						||
| 
								 | 
							
								        self, n: _ArrayLikeInt_co, pvals: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[int_]]: ...
							 | 
						||
| 
								 | 
							
								    def dirichlet(
							 | 
						||
| 
								 | 
							
								        self, alpha: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
							 | 
						||
| 
								 | 
							
								    ) -> ndarray[Any, dtype[float64]]: ...
							 | 
						||
| 
								 | 
							
								    def shuffle(self, x: ArrayLike) -> None: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def permutation(self, x: int) -> ndarray[Any, dtype[int_]]: ...
							 | 
						||
| 
								 | 
							
								    @overload
							 | 
						||
| 
								 | 
							
								    def permutation(self, x: ArrayLike) -> ndarray[Any, Any]: ...
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								_rand: RandomState
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								beta = _rand.beta
							 | 
						||
| 
								 | 
							
								binomial = _rand.binomial
							 | 
						||
| 
								 | 
							
								bytes = _rand.bytes
							 | 
						||
| 
								 | 
							
								chisquare = _rand.chisquare
							 | 
						||
| 
								 | 
							
								choice = _rand.choice
							 | 
						||
| 
								 | 
							
								dirichlet = _rand.dirichlet
							 | 
						||
| 
								 | 
							
								exponential = _rand.exponential
							 | 
						||
| 
								 | 
							
								f = _rand.f
							 | 
						||
| 
								 | 
							
								gamma = _rand.gamma
							 | 
						||
| 
								 | 
							
								get_state = _rand.get_state
							 | 
						||
| 
								 | 
							
								geometric = _rand.geometric
							 | 
						||
| 
								 | 
							
								gumbel = _rand.gumbel
							 | 
						||
| 
								 | 
							
								hypergeometric = _rand.hypergeometric
							 | 
						||
| 
								 | 
							
								laplace = _rand.laplace
							 | 
						||
| 
								 | 
							
								logistic = _rand.logistic
							 | 
						||
| 
								 | 
							
								lognormal = _rand.lognormal
							 | 
						||
| 
								 | 
							
								logseries = _rand.logseries
							 | 
						||
| 
								 | 
							
								multinomial = _rand.multinomial
							 | 
						||
| 
								 | 
							
								multivariate_normal = _rand.multivariate_normal
							 | 
						||
| 
								 | 
							
								negative_binomial = _rand.negative_binomial
							 | 
						||
| 
								 | 
							
								noncentral_chisquare = _rand.noncentral_chisquare
							 | 
						||
| 
								 | 
							
								noncentral_f = _rand.noncentral_f
							 | 
						||
| 
								 | 
							
								normal = _rand.normal
							 | 
						||
| 
								 | 
							
								pareto = _rand.pareto
							 | 
						||
| 
								 | 
							
								permutation = _rand.permutation
							 | 
						||
| 
								 | 
							
								poisson = _rand.poisson
							 | 
						||
| 
								 | 
							
								power = _rand.power
							 | 
						||
| 
								 | 
							
								rand = _rand.rand
							 | 
						||
| 
								 | 
							
								randint = _rand.randint
							 | 
						||
| 
								 | 
							
								randn = _rand.randn
							 | 
						||
| 
								 | 
							
								random = _rand.random
							 | 
						||
| 
								 | 
							
								random_integers = _rand.random_integers
							 | 
						||
| 
								 | 
							
								random_sample = _rand.random_sample
							 | 
						||
| 
								 | 
							
								rayleigh = _rand.rayleigh
							 | 
						||
| 
								 | 
							
								seed = _rand.seed
							 | 
						||
| 
								 | 
							
								set_state = _rand.set_state
							 | 
						||
| 
								 | 
							
								shuffle = _rand.shuffle
							 | 
						||
| 
								 | 
							
								standard_cauchy = _rand.standard_cauchy
							 | 
						||
| 
								 | 
							
								standard_exponential = _rand.standard_exponential
							 | 
						||
| 
								 | 
							
								standard_gamma = _rand.standard_gamma
							 | 
						||
| 
								 | 
							
								standard_normal = _rand.standard_normal
							 | 
						||
| 
								 | 
							
								standard_t = _rand.standard_t
							 | 
						||
| 
								 | 
							
								triangular = _rand.triangular
							 | 
						||
| 
								 | 
							
								uniform = _rand.uniform
							 | 
						||
| 
								 | 
							
								vonmises = _rand.vonmises
							 | 
						||
| 
								 | 
							
								wald = _rand.wald
							 | 
						||
| 
								 | 
							
								weibull = _rand.weibull
							 | 
						||
| 
								 | 
							
								zipf = _rand.zipf
							 | 
						||
| 
								 | 
							
								# Two legacy that are trivial wrappers around random_sample
							 | 
						||
| 
								 | 
							
								sample = _rand.random_sample
							 | 
						||
| 
								 | 
							
								ranf = _rand.random_sample
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def set_bit_generator(bitgen: BitGenerator) -> None:
							 | 
						||
| 
								 | 
							
								    ...
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def get_bit_generator() -> BitGenerator:
							 | 
						||
| 
								 | 
							
								    ...
							 |