You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					150 lines
				
				5.3 KiB
			
		
		
			
		
	
	
					150 lines
				
				5.3 KiB
			| 
								 
											3 years ago
										 
									 | 
							
								import sys
							 | 
						||
| 
								 | 
							
								from numpy.testing import (
							 | 
						||
| 
								 | 
							
								    assert_, assert_array_equal, assert_raises,
							 | 
						||
| 
								 | 
							
								    )
							 | 
						||
| 
								 | 
							
								from numpy import random
							 | 
						||
| 
								 | 
							
								import numpy as np
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class TestRegression:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_VonMises_range(self):
							 | 
						||
| 
								 | 
							
								        # Make sure generated random variables are in [-pi, pi].
							 | 
						||
| 
								 | 
							
								        # Regression test for ticket #986.
							 | 
						||
| 
								 | 
							
								        for mu in np.linspace(-7., 7., 5):
							 | 
						||
| 
								 | 
							
								            r = random.mtrand.vonmises(mu, 1, 50)
							 | 
						||
| 
								 | 
							
								            assert_(np.all(r > -np.pi) and np.all(r <= np.pi))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_hypergeometric_range(self):
							 | 
						||
| 
								 | 
							
								        # Test for ticket #921
							 | 
						||
| 
								 | 
							
								        assert_(np.all(np.random.hypergeometric(3, 18, 11, size=10) < 4))
							 | 
						||
| 
								 | 
							
								        assert_(np.all(np.random.hypergeometric(18, 3, 11, size=10) > 0))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        # Test for ticket #5623
							 | 
						||
| 
								 | 
							
								        args = [
							 | 
						||
| 
								 | 
							
								            (2**20 - 2, 2**20 - 2, 2**20 - 2),  # Check for 32-bit systems
							 | 
						||
| 
								 | 
							
								        ]
							 | 
						||
| 
								 | 
							
								        is_64bits = sys.maxsize > 2**32
							 | 
						||
| 
								 | 
							
								        if is_64bits and sys.platform != 'win32':
							 | 
						||
| 
								 | 
							
								            # Check for 64-bit systems
							 | 
						||
| 
								 | 
							
								            args.append((2**40 - 2, 2**40 - 2, 2**40 - 2))
							 | 
						||
| 
								 | 
							
								        for arg in args:
							 | 
						||
| 
								 | 
							
								            assert_(np.random.hypergeometric(*arg) > 0)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_logseries_convergence(self):
							 | 
						||
| 
								 | 
							
								        # Test for ticket #923
							 | 
						||
| 
								 | 
							
								        N = 1000
							 | 
						||
| 
								 | 
							
								        np.random.seed(0)
							 | 
						||
| 
								 | 
							
								        rvsn = np.random.logseries(0.8, size=N)
							 | 
						||
| 
								 | 
							
								        # these two frequency counts should be close to theoretical
							 | 
						||
| 
								 | 
							
								        # numbers with this large sample
							 | 
						||
| 
								 | 
							
								        # theoretical large N result is 0.49706795
							 | 
						||
| 
								 | 
							
								        freq = np.sum(rvsn == 1) / N
							 | 
						||
| 
								 | 
							
								        msg = f'Frequency was {freq:f}, should be > 0.45'
							 | 
						||
| 
								 | 
							
								        assert_(freq > 0.45, msg)
							 | 
						||
| 
								 | 
							
								        # theoretical large N result is 0.19882718
							 | 
						||
| 
								 | 
							
								        freq = np.sum(rvsn == 2) / N
							 | 
						||
| 
								 | 
							
								        msg = f'Frequency was {freq:f}, should be < 0.23'
							 | 
						||
| 
								 | 
							
								        assert_(freq < 0.23, msg)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_shuffle_mixed_dimension(self):
							 | 
						||
| 
								 | 
							
								        # Test for trac ticket #2074
							 | 
						||
| 
								 | 
							
								        for t in [[1, 2, 3, None],
							 | 
						||
| 
								 | 
							
								                  [(1, 1), (2, 2), (3, 3), None],
							 | 
						||
| 
								 | 
							
								                  [1, (2, 2), (3, 3), None],
							 | 
						||
| 
								 | 
							
								                  [(1, 1), 2, 3, None]]:
							 | 
						||
| 
								 | 
							
								            np.random.seed(12345)
							 | 
						||
| 
								 | 
							
								            shuffled = list(t)
							 | 
						||
| 
								 | 
							
								            random.shuffle(shuffled)
							 | 
						||
| 
								 | 
							
								            expected = np.array([t[0], t[3], t[1], t[2]], dtype=object)
							 | 
						||
| 
								 | 
							
								            assert_array_equal(np.array(shuffled, dtype=object), expected)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_call_within_randomstate(self):
							 | 
						||
| 
								 | 
							
								        # Check that custom RandomState does not call into global state
							 | 
						||
| 
								 | 
							
								        m = np.random.RandomState()
							 | 
						||
| 
								 | 
							
								        res = np.array([0, 8, 7, 2, 1, 9, 4, 7, 0, 3])
							 | 
						||
| 
								 | 
							
								        for i in range(3):
							 | 
						||
| 
								 | 
							
								            np.random.seed(i)
							 | 
						||
| 
								 | 
							
								            m.seed(4321)
							 | 
						||
| 
								 | 
							
								            # If m.state is not honored, the result will change
							 | 
						||
| 
								 | 
							
								            assert_array_equal(m.choice(10, size=10, p=np.ones(10)/10.), res)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_multivariate_normal_size_types(self):
							 | 
						||
| 
								 | 
							
								        # Test for multivariate_normal issue with 'size' argument.
							 | 
						||
| 
								 | 
							
								        # Check that the multivariate_normal size argument can be a
							 | 
						||
| 
								 | 
							
								        # numpy integer.
							 | 
						||
| 
								 | 
							
								        np.random.multivariate_normal([0], [[0]], size=1)
							 | 
						||
| 
								 | 
							
								        np.random.multivariate_normal([0], [[0]], size=np.int_(1))
							 | 
						||
| 
								 | 
							
								        np.random.multivariate_normal([0], [[0]], size=np.int64(1))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_beta_small_parameters(self):
							 | 
						||
| 
								 | 
							
								        # Test that beta with small a and b parameters does not produce
							 | 
						||
| 
								 | 
							
								        # NaNs due to roundoff errors causing 0 / 0, gh-5851
							 | 
						||
| 
								 | 
							
								        np.random.seed(1234567890)
							 | 
						||
| 
								 | 
							
								        x = np.random.beta(0.0001, 0.0001, size=100)
							 | 
						||
| 
								 | 
							
								        assert_(not np.any(np.isnan(x)), 'Nans in np.random.beta')
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_choice_sum_of_probs_tolerance(self):
							 | 
						||
| 
								 | 
							
								        # The sum of probs should be 1.0 with some tolerance.
							 | 
						||
| 
								 | 
							
								        # For low precision dtypes the tolerance was too tight.
							 | 
						||
| 
								 | 
							
								        # See numpy github issue 6123.
							 | 
						||
| 
								 | 
							
								        np.random.seed(1234)
							 | 
						||
| 
								 | 
							
								        a = [1, 2, 3]
							 | 
						||
| 
								 | 
							
								        counts = [4, 4, 2]
							 | 
						||
| 
								 | 
							
								        for dt in np.float16, np.float32, np.float64:
							 | 
						||
| 
								 | 
							
								            probs = np.array(counts, dtype=dt) / sum(counts)
							 | 
						||
| 
								 | 
							
								            c = np.random.choice(a, p=probs)
							 | 
						||
| 
								 | 
							
								            assert_(c in a)
							 | 
						||
| 
								 | 
							
								            assert_raises(ValueError, np.random.choice, a, p=probs*0.9)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_shuffle_of_array_of_different_length_strings(self):
							 | 
						||
| 
								 | 
							
								        # Test that permuting an array of different length strings
							 | 
						||
| 
								 | 
							
								        # will not cause a segfault on garbage collection
							 | 
						||
| 
								 | 
							
								        # Tests gh-7710
							 | 
						||
| 
								 | 
							
								        np.random.seed(1234)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        a = np.array(['a', 'a' * 1000])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        for _ in range(100):
							 | 
						||
| 
								 | 
							
								            np.random.shuffle(a)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        # Force Garbage Collection - should not segfault.
							 | 
						||
| 
								 | 
							
								        import gc
							 | 
						||
| 
								 | 
							
								        gc.collect()
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_shuffle_of_array_of_objects(self):
							 | 
						||
| 
								 | 
							
								        # Test that permuting an array of objects will not cause
							 | 
						||
| 
								 | 
							
								        # a segfault on garbage collection.
							 | 
						||
| 
								 | 
							
								        # See gh-7719
							 | 
						||
| 
								 | 
							
								        np.random.seed(1234)
							 | 
						||
| 
								 | 
							
								        a = np.array([np.arange(1), np.arange(4)], dtype=object)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        for _ in range(1000):
							 | 
						||
| 
								 | 
							
								            np.random.shuffle(a)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        # Force Garbage Collection - should not segfault.
							 | 
						||
| 
								 | 
							
								        import gc
							 | 
						||
| 
								 | 
							
								        gc.collect()
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_permutation_subclass(self):
							 | 
						||
| 
								 | 
							
								        class N(np.ndarray):
							 | 
						||
| 
								 | 
							
								            pass
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        np.random.seed(1)
							 | 
						||
| 
								 | 
							
								        orig = np.arange(3).view(N)
							 | 
						||
| 
								 | 
							
								        perm = np.random.permutation(orig)
							 | 
						||
| 
								 | 
							
								        assert_array_equal(perm, np.array([0, 2, 1]))
							 | 
						||
| 
								 | 
							
								        assert_array_equal(orig, np.arange(3).view(N))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        class M:
							 | 
						||
| 
								 | 
							
								            a = np.arange(5)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            def __array__(self):
							 | 
						||
| 
								 | 
							
								                return self.a
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        np.random.seed(1)
							 | 
						||
| 
								 | 
							
								        m = M()
							 | 
						||
| 
								 | 
							
								        perm = np.random.permutation(m)
							 | 
						||
| 
								 | 
							
								        assert_array_equal(perm, np.array([2, 1, 4, 0, 3]))
							 | 
						||
| 
								 | 
							
								        assert_array_equal(m.__array__(), np.arange(5))
							 |