You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							309 lines
						
					
					
						
							13 KiB
						
					
					
				
			
		
		
	
	
							309 lines
						
					
					
						
							13 KiB
						
					
					
				import numpy as np
 | 
						|
import pytest
 | 
						|
from numpy.random import random
 | 
						|
from numpy.testing import (
 | 
						|
        assert_array_equal, assert_raises, assert_allclose, IS_WASM
 | 
						|
        )
 | 
						|
import threading
 | 
						|
import queue
 | 
						|
 | 
						|
 | 
						|
def fft1(x):
 | 
						|
    L = len(x)
 | 
						|
    phase = -2j * np.pi * (np.arange(L) / L)
 | 
						|
    phase = np.arange(L).reshape(-1, 1) * phase
 | 
						|
    return np.sum(x*np.exp(phase), axis=1)
 | 
						|
 | 
						|
 | 
						|
class TestFFTShift:
 | 
						|
 | 
						|
    def test_fft_n(self):
 | 
						|
        assert_raises(ValueError, np.fft.fft, [1, 2, 3], 0)
 | 
						|
 | 
						|
 | 
						|
class TestFFT1D:
 | 
						|
 | 
						|
    def test_identity(self):
 | 
						|
        maxlen = 512
 | 
						|
        x = random(maxlen) + 1j*random(maxlen)
 | 
						|
        xr = random(maxlen)
 | 
						|
        for i in range(1, maxlen):
 | 
						|
            assert_allclose(np.fft.ifft(np.fft.fft(x[0:i])), x[0:i],
 | 
						|
                            atol=1e-12)
 | 
						|
            assert_allclose(np.fft.irfft(np.fft.rfft(xr[0:i]), i),
 | 
						|
                            xr[0:i], atol=1e-12)
 | 
						|
 | 
						|
    def test_fft(self):
 | 
						|
        x = random(30) + 1j*random(30)
 | 
						|
        assert_allclose(fft1(x), np.fft.fft(x), atol=1e-6)
 | 
						|
        assert_allclose(fft1(x), np.fft.fft(x, norm="backward"), atol=1e-6)
 | 
						|
        assert_allclose(fft1(x) / np.sqrt(30),
 | 
						|
                        np.fft.fft(x, norm="ortho"), atol=1e-6)
 | 
						|
        assert_allclose(fft1(x) / 30.,
 | 
						|
                        np.fft.fft(x, norm="forward"), atol=1e-6)
 | 
						|
 | 
						|
    @pytest.mark.parametrize('norm', (None, 'backward', 'ortho', 'forward'))
 | 
						|
    def test_ifft(self, norm):
 | 
						|
        x = random(30) + 1j*random(30)
 | 
						|
        assert_allclose(
 | 
						|
            x, np.fft.ifft(np.fft.fft(x, norm=norm), norm=norm),
 | 
						|
            atol=1e-6)
 | 
						|
        # Ensure we get the correct error message
 | 
						|
        with pytest.raises(ValueError,
 | 
						|
                           match='Invalid number of FFT data points'):
 | 
						|
            np.fft.ifft([], norm=norm)
 | 
						|
 | 
						|
    def test_fft2(self):
 | 
						|
        x = random((30, 20)) + 1j*random((30, 20))
 | 
						|
        assert_allclose(np.fft.fft(np.fft.fft(x, axis=1), axis=0),
 | 
						|
                        np.fft.fft2(x), atol=1e-6)
 | 
						|
        assert_allclose(np.fft.fft2(x),
 | 
						|
                        np.fft.fft2(x, norm="backward"), atol=1e-6)
 | 
						|
        assert_allclose(np.fft.fft2(x) / np.sqrt(30 * 20),
 | 
						|
                        np.fft.fft2(x, norm="ortho"), atol=1e-6)
 | 
						|
        assert_allclose(np.fft.fft2(x) / (30. * 20.),
 | 
						|
                        np.fft.fft2(x, norm="forward"), atol=1e-6)
 | 
						|
 | 
						|
    def test_ifft2(self):
 | 
						|
        x = random((30, 20)) + 1j*random((30, 20))
 | 
						|
        assert_allclose(np.fft.ifft(np.fft.ifft(x, axis=1), axis=0),
 | 
						|
                        np.fft.ifft2(x), atol=1e-6)
 | 
						|
        assert_allclose(np.fft.ifft2(x),
 | 
						|
                        np.fft.ifft2(x, norm="backward"), atol=1e-6)
 | 
						|
        assert_allclose(np.fft.ifft2(x) * np.sqrt(30 * 20),
 | 
						|
                        np.fft.ifft2(x, norm="ortho"), atol=1e-6)
 | 
						|
        assert_allclose(np.fft.ifft2(x) * (30. * 20.),
 | 
						|
                        np.fft.ifft2(x, norm="forward"), atol=1e-6)
 | 
						|
 | 
						|
    def test_fftn(self):
 | 
						|
        x = random((30, 20, 10)) + 1j*random((30, 20, 10))
 | 
						|
        assert_allclose(
 | 
						|
            np.fft.fft(np.fft.fft(np.fft.fft(x, axis=2), axis=1), axis=0),
 | 
						|
            np.fft.fftn(x), atol=1e-6)
 | 
						|
        assert_allclose(np.fft.fftn(x),
 | 
						|
                        np.fft.fftn(x, norm="backward"), atol=1e-6)
 | 
						|
        assert_allclose(np.fft.fftn(x) / np.sqrt(30 * 20 * 10),
 | 
						|
                        np.fft.fftn(x, norm="ortho"), atol=1e-6)
 | 
						|
        assert_allclose(np.fft.fftn(x) / (30. * 20. * 10.),
 | 
						|
                        np.fft.fftn(x, norm="forward"), atol=1e-6)
 | 
						|
 | 
						|
    def test_ifftn(self):
 | 
						|
        x = random((30, 20, 10)) + 1j*random((30, 20, 10))
 | 
						|
        assert_allclose(
 | 
						|
            np.fft.ifft(np.fft.ifft(np.fft.ifft(x, axis=2), axis=1), axis=0),
 | 
						|
            np.fft.ifftn(x), atol=1e-6)
 | 
						|
        assert_allclose(np.fft.ifftn(x),
 | 
						|
                        np.fft.ifftn(x, norm="backward"), atol=1e-6)
 | 
						|
        assert_allclose(np.fft.ifftn(x) * np.sqrt(30 * 20 * 10),
 | 
						|
                        np.fft.ifftn(x, norm="ortho"), atol=1e-6)
 | 
						|
        assert_allclose(np.fft.ifftn(x) * (30. * 20. * 10.),
 | 
						|
                        np.fft.ifftn(x, norm="forward"), atol=1e-6)
 | 
						|
 | 
						|
    def test_rfft(self):
 | 
						|
        x = random(30)
 | 
						|
        for n in [x.size, 2*x.size]:
 | 
						|
            for norm in [None, 'backward', 'ortho', 'forward']:
 | 
						|
                assert_allclose(
 | 
						|
                    np.fft.fft(x, n=n, norm=norm)[:(n//2 + 1)],
 | 
						|
                    np.fft.rfft(x, n=n, norm=norm), atol=1e-6)
 | 
						|
            assert_allclose(
 | 
						|
                np.fft.rfft(x, n=n),
 | 
						|
                np.fft.rfft(x, n=n, norm="backward"), atol=1e-6)
 | 
						|
            assert_allclose(
 | 
						|
                np.fft.rfft(x, n=n) / np.sqrt(n),
 | 
						|
                np.fft.rfft(x, n=n, norm="ortho"), atol=1e-6)
 | 
						|
            assert_allclose(
 | 
						|
                np.fft.rfft(x, n=n) / n,
 | 
						|
                np.fft.rfft(x, n=n, norm="forward"), atol=1e-6)
 | 
						|
 | 
						|
    def test_irfft(self):
 | 
						|
        x = random(30)
 | 
						|
        assert_allclose(x, np.fft.irfft(np.fft.rfft(x)), atol=1e-6)
 | 
						|
        assert_allclose(x, np.fft.irfft(np.fft.rfft(x, norm="backward"),
 | 
						|
                        norm="backward"), atol=1e-6)
 | 
						|
        assert_allclose(x, np.fft.irfft(np.fft.rfft(x, norm="ortho"),
 | 
						|
                        norm="ortho"), atol=1e-6)
 | 
						|
        assert_allclose(x, np.fft.irfft(np.fft.rfft(x, norm="forward"),
 | 
						|
                        norm="forward"), atol=1e-6)
 | 
						|
 | 
						|
    def test_rfft2(self):
 | 
						|
        x = random((30, 20))
 | 
						|
        assert_allclose(np.fft.fft2(x)[:, :11], np.fft.rfft2(x), atol=1e-6)
 | 
						|
        assert_allclose(np.fft.rfft2(x),
 | 
						|
                        np.fft.rfft2(x, norm="backward"), atol=1e-6)
 | 
						|
        assert_allclose(np.fft.rfft2(x) / np.sqrt(30 * 20),
 | 
						|
                        np.fft.rfft2(x, norm="ortho"), atol=1e-6)
 | 
						|
        assert_allclose(np.fft.rfft2(x) / (30. * 20.),
 | 
						|
                        np.fft.rfft2(x, norm="forward"), atol=1e-6)
 | 
						|
 | 
						|
    def test_irfft2(self):
 | 
						|
        x = random((30, 20))
 | 
						|
        assert_allclose(x, np.fft.irfft2(np.fft.rfft2(x)), atol=1e-6)
 | 
						|
        assert_allclose(x, np.fft.irfft2(np.fft.rfft2(x, norm="backward"),
 | 
						|
                        norm="backward"), atol=1e-6)
 | 
						|
        assert_allclose(x, np.fft.irfft2(np.fft.rfft2(x, norm="ortho"),
 | 
						|
                        norm="ortho"), atol=1e-6)
 | 
						|
        assert_allclose(x, np.fft.irfft2(np.fft.rfft2(x, norm="forward"),
 | 
						|
                        norm="forward"), atol=1e-6)
 | 
						|
 | 
						|
    def test_rfftn(self):
 | 
						|
        x = random((30, 20, 10))
 | 
						|
        assert_allclose(np.fft.fftn(x)[:, :, :6], np.fft.rfftn(x), atol=1e-6)
 | 
						|
        assert_allclose(np.fft.rfftn(x),
 | 
						|
                        np.fft.rfftn(x, norm="backward"), atol=1e-6)
 | 
						|
        assert_allclose(np.fft.rfftn(x) / np.sqrt(30 * 20 * 10),
 | 
						|
                        np.fft.rfftn(x, norm="ortho"), atol=1e-6)
 | 
						|
        assert_allclose(np.fft.rfftn(x) / (30. * 20. * 10.),
 | 
						|
                        np.fft.rfftn(x, norm="forward"), atol=1e-6)
 | 
						|
 | 
						|
    def test_irfftn(self):
 | 
						|
        x = random((30, 20, 10))
 | 
						|
        assert_allclose(x, np.fft.irfftn(np.fft.rfftn(x)), atol=1e-6)
 | 
						|
        assert_allclose(x, np.fft.irfftn(np.fft.rfftn(x, norm="backward"),
 | 
						|
                        norm="backward"), atol=1e-6)
 | 
						|
        assert_allclose(x, np.fft.irfftn(np.fft.rfftn(x, norm="ortho"),
 | 
						|
                        norm="ortho"), atol=1e-6)
 | 
						|
        assert_allclose(x, np.fft.irfftn(np.fft.rfftn(x, norm="forward"),
 | 
						|
                        norm="forward"), atol=1e-6)
 | 
						|
 | 
						|
    def test_hfft(self):
 | 
						|
        x = random(14) + 1j*random(14)
 | 
						|
        x_herm = np.concatenate((random(1), x, random(1)))
 | 
						|
        x = np.concatenate((x_herm, x[::-1].conj()))
 | 
						|
        assert_allclose(np.fft.fft(x), np.fft.hfft(x_herm), atol=1e-6)
 | 
						|
        assert_allclose(np.fft.hfft(x_herm),
 | 
						|
                        np.fft.hfft(x_herm, norm="backward"), atol=1e-6)
 | 
						|
        assert_allclose(np.fft.hfft(x_herm) / np.sqrt(30),
 | 
						|
                        np.fft.hfft(x_herm, norm="ortho"), atol=1e-6)
 | 
						|
        assert_allclose(np.fft.hfft(x_herm) / 30.,
 | 
						|
                        np.fft.hfft(x_herm, norm="forward"), atol=1e-6)
 | 
						|
 | 
						|
    def test_ihfft(self):
 | 
						|
        x = random(14) + 1j*random(14)
 | 
						|
        x_herm = np.concatenate((random(1), x, random(1)))
 | 
						|
        x = np.concatenate((x_herm, x[::-1].conj()))
 | 
						|
        assert_allclose(x_herm, np.fft.ihfft(np.fft.hfft(x_herm)), atol=1e-6)
 | 
						|
        assert_allclose(x_herm, np.fft.ihfft(np.fft.hfft(x_herm,
 | 
						|
                        norm="backward"), norm="backward"), atol=1e-6)
 | 
						|
        assert_allclose(x_herm, np.fft.ihfft(np.fft.hfft(x_herm,
 | 
						|
                        norm="ortho"), norm="ortho"), atol=1e-6)
 | 
						|
        assert_allclose(x_herm, np.fft.ihfft(np.fft.hfft(x_herm,
 | 
						|
                        norm="forward"), norm="forward"), atol=1e-6)
 | 
						|
 | 
						|
    @pytest.mark.parametrize("op", [np.fft.fftn, np.fft.ifftn,
 | 
						|
                                    np.fft.rfftn, np.fft.irfftn])
 | 
						|
    def test_axes(self, op):
 | 
						|
        x = random((30, 20, 10))
 | 
						|
        axes = [(0, 1, 2), (0, 2, 1), (1, 0, 2), (1, 2, 0), (2, 0, 1), (2, 1, 0)]
 | 
						|
        for a in axes:
 | 
						|
            op_tr = op(np.transpose(x, a))
 | 
						|
            tr_op = np.transpose(op(x, axes=a), a)
 | 
						|
            assert_allclose(op_tr, tr_op, atol=1e-6)
 | 
						|
 | 
						|
    def test_all_1d_norm_preserving(self):
 | 
						|
        # verify that round-trip transforms are norm-preserving
 | 
						|
        x = random(30)
 | 
						|
        x_norm = np.linalg.norm(x)
 | 
						|
        n = x.size * 2
 | 
						|
        func_pairs = [(np.fft.fft, np.fft.ifft),
 | 
						|
                      (np.fft.rfft, np.fft.irfft),
 | 
						|
                      # hfft: order so the first function takes x.size samples
 | 
						|
                      #       (necessary for comparison to x_norm above)
 | 
						|
                      (np.fft.ihfft, np.fft.hfft),
 | 
						|
                      ]
 | 
						|
        for forw, back in func_pairs:
 | 
						|
            for n in [x.size, 2*x.size]:
 | 
						|
                for norm in [None, 'backward', 'ortho', 'forward']:
 | 
						|
                    tmp = forw(x, n=n, norm=norm)
 | 
						|
                    tmp = back(tmp, n=n, norm=norm)
 | 
						|
                    assert_allclose(x_norm,
 | 
						|
                                    np.linalg.norm(tmp), atol=1e-6)
 | 
						|
 | 
						|
    @pytest.mark.parametrize("dtype", [np.half, np.single, np.double,
 | 
						|
                                       np.longdouble])
 | 
						|
    def test_dtypes(self, dtype):
 | 
						|
        # make sure that all input precisions are accepted and internally
 | 
						|
        # converted to 64bit
 | 
						|
        x = random(30).astype(dtype)
 | 
						|
        assert_allclose(np.fft.ifft(np.fft.fft(x)), x, atol=1e-6)
 | 
						|
        assert_allclose(np.fft.irfft(np.fft.rfft(x)), x, atol=1e-6)
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize(
 | 
						|
        "dtype",
 | 
						|
        [np.float32, np.float64, np.complex64, np.complex128])
 | 
						|
@pytest.mark.parametrize("order", ["F", 'non-contiguous'])
 | 
						|
@pytest.mark.parametrize(
 | 
						|
        "fft",
 | 
						|
        [np.fft.fft, np.fft.fft2, np.fft.fftn,
 | 
						|
         np.fft.ifft, np.fft.ifft2, np.fft.ifftn])
 | 
						|
def test_fft_with_order(dtype, order, fft):
 | 
						|
    # Check that FFT/IFFT produces identical results for C, Fortran and
 | 
						|
    # non contiguous arrays
 | 
						|
    rng = np.random.RandomState(42)
 | 
						|
    X = rng.rand(8, 7, 13).astype(dtype, copy=False)
 | 
						|
    # See discussion in pull/14178
 | 
						|
    _tol = 8.0 * np.sqrt(np.log2(X.size)) * np.finfo(X.dtype).eps
 | 
						|
    if order == 'F':
 | 
						|
        Y = np.asfortranarray(X)
 | 
						|
    else:
 | 
						|
        # Make a non contiguous array
 | 
						|
        Y = X[::-1]
 | 
						|
        X = np.ascontiguousarray(X[::-1])
 | 
						|
 | 
						|
    if fft.__name__.endswith('fft'):
 | 
						|
        for axis in range(3):
 | 
						|
            X_res = fft(X, axis=axis)
 | 
						|
            Y_res = fft(Y, axis=axis)
 | 
						|
            assert_allclose(X_res, Y_res, atol=_tol, rtol=_tol)
 | 
						|
    elif fft.__name__.endswith(('fft2', 'fftn')):
 | 
						|
        axes = [(0, 1), (1, 2), (0, 2)]
 | 
						|
        if fft.__name__.endswith('fftn'):
 | 
						|
            axes.extend([(0,), (1,), (2,), None])
 | 
						|
        for ax in axes:
 | 
						|
            X_res = fft(X, axes=ax)
 | 
						|
            Y_res = fft(Y, axes=ax)
 | 
						|
            assert_allclose(X_res, Y_res, atol=_tol, rtol=_tol)
 | 
						|
    else:
 | 
						|
        raise ValueError()
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.skipif(IS_WASM, reason="Cannot start thread")
 | 
						|
class TestFFTThreadSafe:
 | 
						|
    threads = 16
 | 
						|
    input_shape = (800, 200)
 | 
						|
 | 
						|
    def _test_mtsame(self, func, *args):
 | 
						|
        def worker(args, q):
 | 
						|
            q.put(func(*args))
 | 
						|
 | 
						|
        q = queue.Queue()
 | 
						|
        expected = func(*args)
 | 
						|
 | 
						|
        # Spin off a bunch of threads to call the same function simultaneously
 | 
						|
        t = [threading.Thread(target=worker, args=(args, q))
 | 
						|
             for i in range(self.threads)]
 | 
						|
        [x.start() for x in t]
 | 
						|
 | 
						|
        [x.join() for x in t]
 | 
						|
        # Make sure all threads returned the correct value
 | 
						|
        for i in range(self.threads):
 | 
						|
            assert_array_equal(q.get(timeout=5), expected,
 | 
						|
                'Function returned wrong value in multithreaded context')
 | 
						|
 | 
						|
    def test_fft(self):
 | 
						|
        a = np.ones(self.input_shape) * 1+0j
 | 
						|
        self._test_mtsame(np.fft.fft, a)
 | 
						|
 | 
						|
    def test_ifft(self):
 | 
						|
        a = np.ones(self.input_shape) * 1+0j
 | 
						|
        self._test_mtsame(np.fft.ifft, a)
 | 
						|
 | 
						|
    def test_rfft(self):
 | 
						|
        a = np.ones(self.input_shape)
 | 
						|
        self._test_mtsame(np.fft.rfft, a)
 | 
						|
 | 
						|
    def test_irfft(self):
 | 
						|
        a = np.ones(self.input_shape) * 1+0j
 | 
						|
        self._test_mtsame(np.fft.irfft, a)
 |