You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							639 lines
						
					
					
						
							21 KiB
						
					
					
				
			
		
		
	
	
							639 lines
						
					
					
						
							21 KiB
						
					
					
				from collections.abc import Callable
 | 
						|
from typing import Any, Union, overload, TypeVar, Literal
 | 
						|
 | 
						|
from numpy import (
 | 
						|
    bool_,
 | 
						|
    dtype,
 | 
						|
    float32,
 | 
						|
    float64,
 | 
						|
    int8,
 | 
						|
    int16,
 | 
						|
    int32,
 | 
						|
    int64,
 | 
						|
    int_,
 | 
						|
    ndarray,
 | 
						|
    uint,
 | 
						|
    uint8,
 | 
						|
    uint16,
 | 
						|
    uint32,
 | 
						|
    uint64,
 | 
						|
)
 | 
						|
from numpy.random import BitGenerator, SeedSequence
 | 
						|
from numpy._typing import (
 | 
						|
    ArrayLike,
 | 
						|
    _ArrayLikeFloat_co,
 | 
						|
    _ArrayLikeInt_co,
 | 
						|
    _DoubleCodes,
 | 
						|
    _DTypeLikeBool,
 | 
						|
    _DTypeLikeInt,
 | 
						|
    _DTypeLikeUInt,
 | 
						|
    _Float32Codes,
 | 
						|
    _Float64Codes,
 | 
						|
    _Int8Codes,
 | 
						|
    _Int16Codes,
 | 
						|
    _Int32Codes,
 | 
						|
    _Int64Codes,
 | 
						|
    _IntCodes,
 | 
						|
    _ShapeLike,
 | 
						|
    _SingleCodes,
 | 
						|
    _SupportsDType,
 | 
						|
    _UInt8Codes,
 | 
						|
    _UInt16Codes,
 | 
						|
    _UInt32Codes,
 | 
						|
    _UInt64Codes,
 | 
						|
    _UIntCodes,
 | 
						|
)
 | 
						|
 | 
						|
_ArrayType = TypeVar("_ArrayType", bound=ndarray[Any, Any])
 | 
						|
 | 
						|
_DTypeLikeFloat32 = Union[
 | 
						|
    dtype[float32],
 | 
						|
    _SupportsDType[dtype[float32]],
 | 
						|
    type[float32],
 | 
						|
    _Float32Codes,
 | 
						|
    _SingleCodes,
 | 
						|
]
 | 
						|
 | 
						|
_DTypeLikeFloat64 = Union[
 | 
						|
    dtype[float64],
 | 
						|
    _SupportsDType[dtype[float64]],
 | 
						|
    type[float],
 | 
						|
    type[float64],
 | 
						|
    _Float64Codes,
 | 
						|
    _DoubleCodes,
 | 
						|
]
 | 
						|
 | 
						|
class Generator:
 | 
						|
    def __init__(self, bit_generator: BitGenerator) -> None: ...
 | 
						|
    def __repr__(self) -> str: ...
 | 
						|
    def __str__(self) -> str: ...
 | 
						|
    def __getstate__(self) -> dict[str, Any]: ...
 | 
						|
    def __setstate__(self, state: dict[str, Any]) -> None: ...
 | 
						|
    def __reduce__(self) -> tuple[Callable[[str], Generator], tuple[str], dict[str, Any]]: ...
 | 
						|
    @property
 | 
						|
    def bit_generator(self) -> BitGenerator: ...
 | 
						|
    def bytes(self, length: int) -> bytes: ...
 | 
						|
    @overload
 | 
						|
    def standard_normal(  # type: ignore[misc]
 | 
						|
        self,
 | 
						|
        size: None = ...,
 | 
						|
        dtype: _DTypeLikeFloat32 | _DTypeLikeFloat64 = ...,
 | 
						|
        out: None = ...,
 | 
						|
    ) -> float: ...
 | 
						|
    @overload
 | 
						|
    def standard_normal(  # type: ignore[misc]
 | 
						|
        self,
 | 
						|
        size: _ShapeLike = ...,
 | 
						|
    ) -> ndarray[Any, dtype[float64]]: ...
 | 
						|
    @overload
 | 
						|
    def standard_normal(  # type: ignore[misc]
 | 
						|
        self,
 | 
						|
        *,
 | 
						|
        out: ndarray[Any, dtype[float64]] = ...,
 | 
						|
    ) -> ndarray[Any, dtype[float64]]: ...
 | 
						|
    @overload
 | 
						|
    def standard_normal(  # type: ignore[misc]
 | 
						|
        self,
 | 
						|
        size: _ShapeLike = ...,
 | 
						|
        dtype: _DTypeLikeFloat32 = ...,
 | 
						|
        out: None | ndarray[Any, dtype[float32]] = ...,
 | 
						|
    ) -> ndarray[Any, dtype[float32]]: ...
 | 
						|
    @overload
 | 
						|
    def standard_normal(  # type: ignore[misc]
 | 
						|
        self,
 | 
						|
        size: _ShapeLike = ...,
 | 
						|
        dtype: _DTypeLikeFloat64 = ...,
 | 
						|
        out: None | ndarray[Any, dtype[float64]] = ...,
 | 
						|
    ) -> ndarray[Any, dtype[float64]]: ...
 | 
						|
    @overload
 | 
						|
    def permutation(self, x: int, axis: int = ...) -> ndarray[Any, dtype[int64]]: ...
 | 
						|
    @overload
 | 
						|
    def permutation(self, x: ArrayLike, axis: int = ...) -> ndarray[Any, Any]: ...
 | 
						|
    @overload
 | 
						|
    def standard_exponential(  # type: ignore[misc]
 | 
						|
        self,
 | 
						|
        size: None = ...,
 | 
						|
        dtype: _DTypeLikeFloat32 | _DTypeLikeFloat64 = ...,
 | 
						|
        method: Literal["zig", "inv"] = ...,
 | 
						|
        out: None = ...,
 | 
						|
    ) -> float: ...
 | 
						|
    @overload
 | 
						|
    def standard_exponential(
 | 
						|
        self,
 | 
						|
        size: _ShapeLike = ...,
 | 
						|
    ) -> ndarray[Any, dtype[float64]]: ...
 | 
						|
    @overload
 | 
						|
    def standard_exponential(
 | 
						|
        self,
 | 
						|
        *,
 | 
						|
        out: ndarray[Any, dtype[float64]] = ...,
 | 
						|
    ) -> ndarray[Any, dtype[float64]]: ...
 | 
						|
    @overload
 | 
						|
    def standard_exponential(
 | 
						|
        self,
 | 
						|
        size: _ShapeLike = ...,
 | 
						|
        *,
 | 
						|
        method: Literal["zig", "inv"] = ...,
 | 
						|
        out: None | ndarray[Any, dtype[float64]] = ...,
 | 
						|
    ) -> ndarray[Any, dtype[float64]]: ...
 | 
						|
    @overload
 | 
						|
    def standard_exponential(
 | 
						|
        self,
 | 
						|
        size: _ShapeLike = ...,
 | 
						|
        dtype: _DTypeLikeFloat32 = ...,
 | 
						|
        method: Literal["zig", "inv"] = ...,
 | 
						|
        out: None | ndarray[Any, dtype[float32]] = ...,
 | 
						|
    ) -> ndarray[Any, dtype[float32]]: ...
 | 
						|
    @overload
 | 
						|
    def standard_exponential(
 | 
						|
        self,
 | 
						|
        size: _ShapeLike = ...,
 | 
						|
        dtype: _DTypeLikeFloat64 = ...,
 | 
						|
        method: Literal["zig", "inv"] = ...,
 | 
						|
        out: None | ndarray[Any, dtype[float64]] = ...,
 | 
						|
    ) -> ndarray[Any, dtype[float64]]: ...
 | 
						|
    @overload
 | 
						|
    def random(  # type: ignore[misc]
 | 
						|
        self,
 | 
						|
        size: None = ...,
 | 
						|
        dtype: _DTypeLikeFloat32 | _DTypeLikeFloat64 = ...,
 | 
						|
        out: None = ...,
 | 
						|
    ) -> float: ...
 | 
						|
    @overload
 | 
						|
    def random(
 | 
						|
        self,
 | 
						|
        *,
 | 
						|
        out: ndarray[Any, dtype[float64]] = ...,
 | 
						|
    ) -> ndarray[Any, dtype[float64]]: ...
 | 
						|
    @overload
 | 
						|
    def random(
 | 
						|
        self,
 | 
						|
        size: _ShapeLike = ...,
 | 
						|
        *,
 | 
						|
        out: None | ndarray[Any, dtype[float64]] = ...,
 | 
						|
    ) -> ndarray[Any, dtype[float64]]: ...
 | 
						|
    @overload
 | 
						|
    def random(
 | 
						|
        self,
 | 
						|
        size: _ShapeLike = ...,
 | 
						|
        dtype: _DTypeLikeFloat32 = ...,
 | 
						|
        out: None | ndarray[Any, dtype[float32]] = ...,
 | 
						|
    ) -> ndarray[Any, dtype[float32]]: ...
 | 
						|
    @overload
 | 
						|
    def random(
 | 
						|
        self,
 | 
						|
        size: _ShapeLike = ...,
 | 
						|
        dtype: _DTypeLikeFloat64 = ...,
 | 
						|
        out: None | ndarray[Any, dtype[float64]] = ...,
 | 
						|
    ) -> ndarray[Any, dtype[float64]]: ...
 | 
						|
    @overload
 | 
						|
    def beta(self, a: float, b: float, size: None = ...) -> float: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def beta(
 | 
						|
        self, a: _ArrayLikeFloat_co, b: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
 | 
						|
    ) -> ndarray[Any, dtype[float64]]: ...
 | 
						|
    @overload
 | 
						|
    def exponential(self, scale: float = ..., size: None = ...) -> float: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def exponential(
 | 
						|
        self, scale: _ArrayLikeFloat_co = ..., size: None | _ShapeLike = ...
 | 
						|
    ) -> ndarray[Any, dtype[float64]]: ...
 | 
						|
    @overload
 | 
						|
    def integers(  # type: ignore[misc]
 | 
						|
        self,
 | 
						|
        low: int,
 | 
						|
        high: None | int = ...,
 | 
						|
    ) -> int: ...
 | 
						|
    @overload
 | 
						|
    def integers(  # type: ignore[misc]
 | 
						|
        self,
 | 
						|
        low: int,
 | 
						|
        high: None | int = ...,
 | 
						|
        size: None = ...,
 | 
						|
        dtype: _DTypeLikeBool = ...,
 | 
						|
        endpoint: bool = ...,
 | 
						|
    ) -> bool: ...
 | 
						|
    @overload
 | 
						|
    def integers(  # type: ignore[misc]
 | 
						|
        self,
 | 
						|
        low: int,
 | 
						|
        high: None | int = ...,
 | 
						|
        size: None = ...,
 | 
						|
        dtype: _DTypeLikeInt | _DTypeLikeUInt = ...,
 | 
						|
        endpoint: bool = ...,
 | 
						|
    ) -> int: ...
 | 
						|
    @overload
 | 
						|
    def integers(  # type: ignore[misc]
 | 
						|
        self,
 | 
						|
        low: _ArrayLikeInt_co,
 | 
						|
        high: None | _ArrayLikeInt_co = ...,
 | 
						|
        size: None | _ShapeLike = ...,
 | 
						|
    ) -> ndarray[Any, dtype[int64]]: ...
 | 
						|
    @overload
 | 
						|
    def integers(  # type: ignore[misc]
 | 
						|
        self,
 | 
						|
        low: _ArrayLikeInt_co,
 | 
						|
        high: None | _ArrayLikeInt_co = ...,
 | 
						|
        size: None | _ShapeLike = ...,
 | 
						|
        dtype: _DTypeLikeBool = ...,
 | 
						|
        endpoint: bool = ...,
 | 
						|
    ) -> ndarray[Any, dtype[bool_]]: ...
 | 
						|
    @overload
 | 
						|
    def integers(  # type: ignore[misc]
 | 
						|
        self,
 | 
						|
        low: _ArrayLikeInt_co,
 | 
						|
        high: None | _ArrayLikeInt_co = ...,
 | 
						|
        size: None | _ShapeLike = ...,
 | 
						|
        dtype: dtype[int8] | type[int8] | _Int8Codes | _SupportsDType[dtype[int8]] = ...,
 | 
						|
        endpoint: bool = ...,
 | 
						|
    ) -> ndarray[Any, dtype[int8]]: ...
 | 
						|
    @overload
 | 
						|
    def integers(  # type: ignore[misc]
 | 
						|
        self,
 | 
						|
        low: _ArrayLikeInt_co,
 | 
						|
        high: None | _ArrayLikeInt_co = ...,
 | 
						|
        size: None | _ShapeLike = ...,
 | 
						|
        dtype: dtype[int16] | type[int16] | _Int16Codes | _SupportsDType[dtype[int16]] = ...,
 | 
						|
        endpoint: bool = ...,
 | 
						|
    ) -> ndarray[Any, dtype[int16]]: ...
 | 
						|
    @overload
 | 
						|
    def integers(  # type: ignore[misc]
 | 
						|
        self,
 | 
						|
        low: _ArrayLikeInt_co,
 | 
						|
        high: None | _ArrayLikeInt_co = ...,
 | 
						|
        size: None | _ShapeLike = ...,
 | 
						|
        dtype: dtype[int32] | type[int32] | _Int32Codes | _SupportsDType[dtype[int32]] = ...,
 | 
						|
        endpoint: bool = ...,
 | 
						|
    ) -> ndarray[Any, dtype[int32]]: ...
 | 
						|
    @overload
 | 
						|
    def integers(  # type: ignore[misc]
 | 
						|
        self,
 | 
						|
        low: _ArrayLikeInt_co,
 | 
						|
        high: None | _ArrayLikeInt_co = ...,
 | 
						|
        size: None | _ShapeLike = ...,
 | 
						|
        dtype: None | dtype[int64] | type[int64] | _Int64Codes | _SupportsDType[dtype[int64]] = ...,
 | 
						|
        endpoint: bool = ...,
 | 
						|
    ) -> ndarray[Any, dtype[int64]]: ...
 | 
						|
    @overload
 | 
						|
    def integers(  # type: ignore[misc]
 | 
						|
        self,
 | 
						|
        low: _ArrayLikeInt_co,
 | 
						|
        high: None | _ArrayLikeInt_co = ...,
 | 
						|
        size: None | _ShapeLike = ...,
 | 
						|
        dtype: dtype[uint8] | type[uint8] | _UInt8Codes | _SupportsDType[dtype[uint8]] = ...,
 | 
						|
        endpoint: bool = ...,
 | 
						|
    ) -> ndarray[Any, dtype[uint8]]: ...
 | 
						|
    @overload
 | 
						|
    def integers(  # type: ignore[misc]
 | 
						|
        self,
 | 
						|
        low: _ArrayLikeInt_co,
 | 
						|
        high: None | _ArrayLikeInt_co = ...,
 | 
						|
        size: None | _ShapeLike = ...,
 | 
						|
        dtype: dtype[uint16] | type[uint16] | _UInt16Codes | _SupportsDType[dtype[uint16]] = ...,
 | 
						|
        endpoint: bool = ...,
 | 
						|
    ) -> ndarray[Any, dtype[uint16]]: ...
 | 
						|
    @overload
 | 
						|
    def integers(  # type: ignore[misc]
 | 
						|
        self,
 | 
						|
        low: _ArrayLikeInt_co,
 | 
						|
        high: None | _ArrayLikeInt_co = ...,
 | 
						|
        size: None | _ShapeLike = ...,
 | 
						|
        dtype: dtype[uint32] | type[uint32] | _UInt32Codes | _SupportsDType[dtype[uint32]] = ...,
 | 
						|
        endpoint: bool = ...,
 | 
						|
    ) -> ndarray[Any, dtype[uint32]]: ...
 | 
						|
    @overload
 | 
						|
    def integers(  # type: ignore[misc]
 | 
						|
        self,
 | 
						|
        low: _ArrayLikeInt_co,
 | 
						|
        high: None | _ArrayLikeInt_co = ...,
 | 
						|
        size: None | _ShapeLike = ...,
 | 
						|
        dtype: dtype[uint64] | type[uint64] | _UInt64Codes | _SupportsDType[dtype[uint64]] = ...,
 | 
						|
        endpoint: bool = ...,
 | 
						|
    ) -> ndarray[Any, dtype[uint64]]: ...
 | 
						|
    @overload
 | 
						|
    def integers(  # type: ignore[misc]
 | 
						|
        self,
 | 
						|
        low: _ArrayLikeInt_co,
 | 
						|
        high: None | _ArrayLikeInt_co = ...,
 | 
						|
        size: None | _ShapeLike = ...,
 | 
						|
        dtype: dtype[int_] | type[int] | type[int_] | _IntCodes | _SupportsDType[dtype[int_]] = ...,
 | 
						|
        endpoint: bool = ...,
 | 
						|
    ) -> ndarray[Any, dtype[int_]]: ...
 | 
						|
    @overload
 | 
						|
    def integers(  # type: ignore[misc]
 | 
						|
        self,
 | 
						|
        low: _ArrayLikeInt_co,
 | 
						|
        high: None | _ArrayLikeInt_co = ...,
 | 
						|
        size: None | _ShapeLike = ...,
 | 
						|
        dtype: dtype[uint] | type[uint] | _UIntCodes | _SupportsDType[dtype[uint]] = ...,
 | 
						|
        endpoint: bool = ...,
 | 
						|
    ) -> ndarray[Any, dtype[uint]]: ...
 | 
						|
    # TODO: Use a TypeVar _T here to get away from Any output?  Should be int->ndarray[Any,dtype[int64]], ArrayLike[_T] -> _T | ndarray[Any,Any]
 | 
						|
    @overload
 | 
						|
    def choice(
 | 
						|
        self,
 | 
						|
        a: int,
 | 
						|
        size: None = ...,
 | 
						|
        replace: bool = ...,
 | 
						|
        p: None | _ArrayLikeFloat_co = ...,
 | 
						|
        axis: int = ...,
 | 
						|
        shuffle: bool = ...,
 | 
						|
    ) -> int: ...
 | 
						|
    @overload
 | 
						|
    def choice(
 | 
						|
        self,
 | 
						|
        a: int,
 | 
						|
        size: _ShapeLike = ...,
 | 
						|
        replace: bool = ...,
 | 
						|
        p: None | _ArrayLikeFloat_co = ...,
 | 
						|
        axis: int = ...,
 | 
						|
        shuffle: bool = ...,
 | 
						|
    ) -> ndarray[Any, dtype[int64]]: ...
 | 
						|
    @overload
 | 
						|
    def choice(
 | 
						|
        self,
 | 
						|
        a: ArrayLike,
 | 
						|
        size: None = ...,
 | 
						|
        replace: bool = ...,
 | 
						|
        p: None | _ArrayLikeFloat_co = ...,
 | 
						|
        axis: int = ...,
 | 
						|
        shuffle: bool = ...,
 | 
						|
    ) -> Any: ...
 | 
						|
    @overload
 | 
						|
    def choice(
 | 
						|
        self,
 | 
						|
        a: ArrayLike,
 | 
						|
        size: _ShapeLike = ...,
 | 
						|
        replace: bool = ...,
 | 
						|
        p: None | _ArrayLikeFloat_co = ...,
 | 
						|
        axis: int = ...,
 | 
						|
        shuffle: bool = ...,
 | 
						|
    ) -> ndarray[Any, Any]: ...
 | 
						|
    @overload
 | 
						|
    def uniform(self, low: float = ..., high: float = ..., size: None = ...) -> float: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def uniform(
 | 
						|
        self,
 | 
						|
        low: _ArrayLikeFloat_co = ...,
 | 
						|
        high: _ArrayLikeFloat_co = ...,
 | 
						|
        size: None | _ShapeLike = ...,
 | 
						|
    ) -> ndarray[Any, dtype[float64]]: ...
 | 
						|
    @overload
 | 
						|
    def normal(self, loc: float = ..., scale: float = ..., size: None = ...) -> float: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def normal(
 | 
						|
        self,
 | 
						|
        loc: _ArrayLikeFloat_co = ...,
 | 
						|
        scale: _ArrayLikeFloat_co = ...,
 | 
						|
        size: None | _ShapeLike = ...,
 | 
						|
    ) -> ndarray[Any, dtype[float64]]: ...
 | 
						|
    @overload
 | 
						|
    def standard_gamma(  # type: ignore[misc]
 | 
						|
        self,
 | 
						|
        shape: float,
 | 
						|
        size: None = ...,
 | 
						|
        dtype: _DTypeLikeFloat32 | _DTypeLikeFloat64 = ...,
 | 
						|
        out: None = ...,
 | 
						|
    ) -> float: ...
 | 
						|
    @overload
 | 
						|
    def standard_gamma(
 | 
						|
        self,
 | 
						|
        shape: _ArrayLikeFloat_co,
 | 
						|
        size: None | _ShapeLike = ...,
 | 
						|
    ) -> ndarray[Any, dtype[float64]]: ...
 | 
						|
    @overload
 | 
						|
    def standard_gamma(
 | 
						|
        self,
 | 
						|
        shape: _ArrayLikeFloat_co,
 | 
						|
        *,
 | 
						|
        out: ndarray[Any, dtype[float64]] = ...,
 | 
						|
    ) -> ndarray[Any, dtype[float64]]: ...
 | 
						|
    @overload
 | 
						|
    def standard_gamma(
 | 
						|
        self,
 | 
						|
        shape: _ArrayLikeFloat_co,
 | 
						|
        size: None | _ShapeLike = ...,
 | 
						|
        dtype: _DTypeLikeFloat32 = ...,
 | 
						|
        out: None | ndarray[Any, dtype[float32]] = ...,
 | 
						|
    ) -> ndarray[Any, dtype[float32]]: ...
 | 
						|
    @overload
 | 
						|
    def standard_gamma(
 | 
						|
        self,
 | 
						|
        shape: _ArrayLikeFloat_co,
 | 
						|
        size: None | _ShapeLike = ...,
 | 
						|
        dtype: _DTypeLikeFloat64 = ...,
 | 
						|
        out: None | ndarray[Any, dtype[float64]] = ...,
 | 
						|
    ) -> ndarray[Any, dtype[float64]]: ...
 | 
						|
    @overload
 | 
						|
    def gamma(self, shape: float, scale: float = ..., size: None = ...) -> float: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def gamma(
 | 
						|
        self,
 | 
						|
        shape: _ArrayLikeFloat_co,
 | 
						|
        scale: _ArrayLikeFloat_co = ...,
 | 
						|
        size: None | _ShapeLike = ...,
 | 
						|
    ) -> ndarray[Any, dtype[float64]]: ...
 | 
						|
    @overload
 | 
						|
    def f(self, dfnum: float, dfden: float, size: None = ...) -> float: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def f(
 | 
						|
        self, dfnum: _ArrayLikeFloat_co, dfden: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
 | 
						|
    ) -> ndarray[Any, dtype[float64]]: ...
 | 
						|
    @overload
 | 
						|
    def noncentral_f(self, dfnum: float, dfden: float, nonc: float, size: None = ...) -> float: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def noncentral_f(
 | 
						|
        self,
 | 
						|
        dfnum: _ArrayLikeFloat_co,
 | 
						|
        dfden: _ArrayLikeFloat_co,
 | 
						|
        nonc: _ArrayLikeFloat_co,
 | 
						|
        size: None | _ShapeLike = ...,
 | 
						|
    ) -> ndarray[Any, dtype[float64]]: ...
 | 
						|
    @overload
 | 
						|
    def chisquare(self, df: float, size: None = ...) -> float: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def chisquare(
 | 
						|
        self, df: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
 | 
						|
    ) -> ndarray[Any, dtype[float64]]: ...
 | 
						|
    @overload
 | 
						|
    def noncentral_chisquare(self, df: float, nonc: float, size: None = ...) -> float: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def noncentral_chisquare(
 | 
						|
        self, df: _ArrayLikeFloat_co, nonc: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
 | 
						|
    ) -> ndarray[Any, dtype[float64]]: ...
 | 
						|
    @overload
 | 
						|
    def standard_t(self, df: float, size: None = ...) -> float: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def standard_t(
 | 
						|
        self, df: _ArrayLikeFloat_co, size: None = ...
 | 
						|
    ) -> ndarray[Any, dtype[float64]]: ...
 | 
						|
    @overload
 | 
						|
    def standard_t(
 | 
						|
        self, df: _ArrayLikeFloat_co, size: _ShapeLike = ...
 | 
						|
    ) -> ndarray[Any, dtype[float64]]: ...
 | 
						|
    @overload
 | 
						|
    def vonmises(self, mu: float, kappa: float, size: None = ...) -> float: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def vonmises(
 | 
						|
        self, mu: _ArrayLikeFloat_co, kappa: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
 | 
						|
    ) -> ndarray[Any, dtype[float64]]: ...
 | 
						|
    @overload
 | 
						|
    def pareto(self, a: float, size: None = ...) -> float: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def pareto(
 | 
						|
        self, a: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
 | 
						|
    ) -> ndarray[Any, dtype[float64]]: ...
 | 
						|
    @overload
 | 
						|
    def weibull(self, a: float, size: None = ...) -> float: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def weibull(
 | 
						|
        self, a: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
 | 
						|
    ) -> ndarray[Any, dtype[float64]]: ...
 | 
						|
    @overload
 | 
						|
    def power(self, a: float, size: None = ...) -> float: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def power(
 | 
						|
        self, a: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
 | 
						|
    ) -> ndarray[Any, dtype[float64]]: ...
 | 
						|
    @overload
 | 
						|
    def standard_cauchy(self, size: None = ...) -> float: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def standard_cauchy(self, size: _ShapeLike = ...) -> ndarray[Any, dtype[float64]]: ...
 | 
						|
    @overload
 | 
						|
    def laplace(self, loc: float = ..., scale: float = ..., size: None = ...) -> float: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def laplace(
 | 
						|
        self,
 | 
						|
        loc: _ArrayLikeFloat_co = ...,
 | 
						|
        scale: _ArrayLikeFloat_co = ...,
 | 
						|
        size: None | _ShapeLike = ...,
 | 
						|
    ) -> ndarray[Any, dtype[float64]]: ...
 | 
						|
    @overload
 | 
						|
    def gumbel(self, loc: float = ..., scale: float = ..., size: None = ...) -> float: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def gumbel(
 | 
						|
        self,
 | 
						|
        loc: _ArrayLikeFloat_co = ...,
 | 
						|
        scale: _ArrayLikeFloat_co = ...,
 | 
						|
        size: None | _ShapeLike = ...,
 | 
						|
    ) -> ndarray[Any, dtype[float64]]: ...
 | 
						|
    @overload
 | 
						|
    def logistic(self, loc: float = ..., scale: float = ..., size: None = ...) -> float: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def logistic(
 | 
						|
        self,
 | 
						|
        loc: _ArrayLikeFloat_co = ...,
 | 
						|
        scale: _ArrayLikeFloat_co = ...,
 | 
						|
        size: None | _ShapeLike = ...,
 | 
						|
    ) -> ndarray[Any, dtype[float64]]: ...
 | 
						|
    @overload
 | 
						|
    def lognormal(self, mean: float = ..., sigma: float = ..., size: None = ...) -> float: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def lognormal(
 | 
						|
        self,
 | 
						|
        mean: _ArrayLikeFloat_co = ...,
 | 
						|
        sigma: _ArrayLikeFloat_co = ...,
 | 
						|
        size: None | _ShapeLike = ...,
 | 
						|
    ) -> ndarray[Any, dtype[float64]]: ...
 | 
						|
    @overload
 | 
						|
    def rayleigh(self, scale: float = ..., size: None = ...) -> float: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def rayleigh(
 | 
						|
        self, scale: _ArrayLikeFloat_co = ..., size: None | _ShapeLike = ...
 | 
						|
    ) -> ndarray[Any, dtype[float64]]: ...
 | 
						|
    @overload
 | 
						|
    def wald(self, mean: float, scale: float, size: None = ...) -> float: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def wald(
 | 
						|
        self, mean: _ArrayLikeFloat_co, scale: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
 | 
						|
    ) -> ndarray[Any, dtype[float64]]: ...
 | 
						|
    @overload
 | 
						|
    def triangular(self, left: float, mode: float, right: float, size: None = ...) -> float: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def triangular(
 | 
						|
        self,
 | 
						|
        left: _ArrayLikeFloat_co,
 | 
						|
        mode: _ArrayLikeFloat_co,
 | 
						|
        right: _ArrayLikeFloat_co,
 | 
						|
        size: None | _ShapeLike = ...,
 | 
						|
    ) -> ndarray[Any, dtype[float64]]: ...
 | 
						|
    @overload
 | 
						|
    def binomial(self, n: int, p: float, size: None = ...) -> int: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def binomial(
 | 
						|
        self, n: _ArrayLikeInt_co, p: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
 | 
						|
    ) -> ndarray[Any, dtype[int64]]: ...
 | 
						|
    @overload
 | 
						|
    def negative_binomial(self, n: float, p: float, size: None = ...) -> int: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def negative_binomial(
 | 
						|
        self, n: _ArrayLikeFloat_co, p: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
 | 
						|
    ) -> ndarray[Any, dtype[int64]]: ...
 | 
						|
    @overload
 | 
						|
    def poisson(self, lam: float = ..., size: None = ...) -> int: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def poisson(
 | 
						|
        self, lam: _ArrayLikeFloat_co = ..., size: None | _ShapeLike = ...
 | 
						|
    ) -> ndarray[Any, dtype[int64]]: ...
 | 
						|
    @overload
 | 
						|
    def zipf(self, a: float, size: None = ...) -> int: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def zipf(
 | 
						|
        self, a: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
 | 
						|
    ) -> ndarray[Any, dtype[int64]]: ...
 | 
						|
    @overload
 | 
						|
    def geometric(self, p: float, size: None = ...) -> int: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def geometric(
 | 
						|
        self, p: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
 | 
						|
    ) -> ndarray[Any, dtype[int64]]: ...
 | 
						|
    @overload
 | 
						|
    def hypergeometric(self, ngood: int, nbad: int, nsample: int, size: None = ...) -> int: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def hypergeometric(
 | 
						|
        self,
 | 
						|
        ngood: _ArrayLikeInt_co,
 | 
						|
        nbad: _ArrayLikeInt_co,
 | 
						|
        nsample: _ArrayLikeInt_co,
 | 
						|
        size: None | _ShapeLike = ...,
 | 
						|
    ) -> ndarray[Any, dtype[int64]]: ...
 | 
						|
    @overload
 | 
						|
    def logseries(self, p: float, size: None = ...) -> int: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def logseries(
 | 
						|
        self, p: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
 | 
						|
    ) -> ndarray[Any, dtype[int64]]: ...
 | 
						|
    def multivariate_normal(
 | 
						|
        self,
 | 
						|
        mean: _ArrayLikeFloat_co,
 | 
						|
        cov: _ArrayLikeFloat_co,
 | 
						|
        size: None | _ShapeLike = ...,
 | 
						|
        check_valid: Literal["warn", "raise", "ignore"] = ...,
 | 
						|
        tol: float = ...,
 | 
						|
        *,
 | 
						|
        method: Literal["svd", "eigh", "cholesky"] = ...,
 | 
						|
    ) -> ndarray[Any, dtype[float64]]: ...
 | 
						|
    def multinomial(
 | 
						|
        self, n: _ArrayLikeInt_co,
 | 
						|
            pvals: _ArrayLikeFloat_co,
 | 
						|
            size: None | _ShapeLike = ...
 | 
						|
    ) -> ndarray[Any, dtype[int64]]: ...
 | 
						|
    def multivariate_hypergeometric(
 | 
						|
        self,
 | 
						|
        colors: _ArrayLikeInt_co,
 | 
						|
        nsample: int,
 | 
						|
        size: None | _ShapeLike = ...,
 | 
						|
        method: Literal["marginals", "count"] = ...,
 | 
						|
    ) -> ndarray[Any, dtype[int64]]: ...
 | 
						|
    def dirichlet(
 | 
						|
        self, alpha: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
 | 
						|
    ) -> ndarray[Any, dtype[float64]]: ...
 | 
						|
    def permuted(
 | 
						|
        self, x: ArrayLike, *, axis: None | int = ..., out: None | ndarray[Any, Any] = ...
 | 
						|
    ) -> ndarray[Any, Any]: ...
 | 
						|
    def shuffle(self, x: ArrayLike, axis: int = ...) -> None: ...
 | 
						|
 | 
						|
def default_rng(
 | 
						|
    seed: None | _ArrayLikeInt_co | SeedSequence | BitGenerator | Generator = ...
 | 
						|
) -> Generator: ...
 |