You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							571 lines
						
					
					
						
							19 KiB
						
					
					
				
			
		
		
	
	
							571 lines
						
					
					
						
							19 KiB
						
					
					
				from collections.abc import Callable
 | 
						|
from typing import Any, Union, overload, Literal
 | 
						|
 | 
						|
from numpy import (
 | 
						|
    bool_,
 | 
						|
    dtype,
 | 
						|
    float32,
 | 
						|
    float64,
 | 
						|
    int8,
 | 
						|
    int16,
 | 
						|
    int32,
 | 
						|
    int64,
 | 
						|
    int_,
 | 
						|
    ndarray,
 | 
						|
    uint,
 | 
						|
    uint8,
 | 
						|
    uint16,
 | 
						|
    uint32,
 | 
						|
    uint64,
 | 
						|
)
 | 
						|
from numpy.random.bit_generator import BitGenerator
 | 
						|
from numpy._typing import (
 | 
						|
    ArrayLike,
 | 
						|
    _ArrayLikeFloat_co,
 | 
						|
    _ArrayLikeInt_co,
 | 
						|
    _DoubleCodes,
 | 
						|
    _DTypeLikeBool,
 | 
						|
    _DTypeLikeInt,
 | 
						|
    _DTypeLikeUInt,
 | 
						|
    _Float32Codes,
 | 
						|
    _Float64Codes,
 | 
						|
    _Int8Codes,
 | 
						|
    _Int16Codes,
 | 
						|
    _Int32Codes,
 | 
						|
    _Int64Codes,
 | 
						|
    _IntCodes,
 | 
						|
    _ShapeLike,
 | 
						|
    _SingleCodes,
 | 
						|
    _SupportsDType,
 | 
						|
    _UInt8Codes,
 | 
						|
    _UInt16Codes,
 | 
						|
    _UInt32Codes,
 | 
						|
    _UInt64Codes,
 | 
						|
    _UIntCodes,
 | 
						|
)
 | 
						|
 | 
						|
_DTypeLikeFloat32 = Union[
 | 
						|
    dtype[float32],
 | 
						|
    _SupportsDType[dtype[float32]],
 | 
						|
    type[float32],
 | 
						|
    _Float32Codes,
 | 
						|
    _SingleCodes,
 | 
						|
]
 | 
						|
 | 
						|
_DTypeLikeFloat64 = Union[
 | 
						|
    dtype[float64],
 | 
						|
    _SupportsDType[dtype[float64]],
 | 
						|
    type[float],
 | 
						|
    type[float64],
 | 
						|
    _Float64Codes,
 | 
						|
    _DoubleCodes,
 | 
						|
]
 | 
						|
 | 
						|
class RandomState:
 | 
						|
    _bit_generator: BitGenerator
 | 
						|
    def __init__(self, seed: None | _ArrayLikeInt_co | BitGenerator = ...) -> None: ...
 | 
						|
    def __repr__(self) -> str: ...
 | 
						|
    def __str__(self) -> str: ...
 | 
						|
    def __getstate__(self) -> dict[str, Any]: ...
 | 
						|
    def __setstate__(self, state: dict[str, Any]) -> None: ...
 | 
						|
    def __reduce__(self) -> tuple[Callable[[str], RandomState], tuple[str], dict[str, Any]]: ...
 | 
						|
    def seed(self, seed: None | _ArrayLikeFloat_co = ...) -> None: ...
 | 
						|
    @overload
 | 
						|
    def get_state(self, legacy: Literal[False] = ...) -> dict[str, Any]: ...
 | 
						|
    @overload
 | 
						|
    def get_state(
 | 
						|
        self, legacy: Literal[True] = ...
 | 
						|
    ) -> dict[str, Any] | tuple[str, ndarray[Any, dtype[uint32]], int, int, float]: ...
 | 
						|
    def set_state(
 | 
						|
        self, state: dict[str, Any] | tuple[str, ndarray[Any, dtype[uint32]], int, int, float]
 | 
						|
    ) -> None: ...
 | 
						|
    @overload
 | 
						|
    def random_sample(self, size: None = ...) -> float: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def random_sample(self, size: _ShapeLike = ...) -> ndarray[Any, dtype[float64]]: ...
 | 
						|
    @overload
 | 
						|
    def random(self, size: None = ...) -> float: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def random(self, size: _ShapeLike = ...) -> ndarray[Any, dtype[float64]]: ...
 | 
						|
    @overload
 | 
						|
    def beta(self, a: float, b: float, size: None = ...) -> float: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def beta(
 | 
						|
        self, a: _ArrayLikeFloat_co, b: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
 | 
						|
    ) -> ndarray[Any, dtype[float64]]: ...
 | 
						|
    @overload
 | 
						|
    def exponential(self, scale: float = ..., size: None = ...) -> float: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def exponential(
 | 
						|
        self, scale: _ArrayLikeFloat_co = ..., size: None | _ShapeLike = ...
 | 
						|
    ) -> ndarray[Any, dtype[float64]]: ...
 | 
						|
    @overload
 | 
						|
    def standard_exponential(self, size: None = ...) -> float: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def standard_exponential(self, size: _ShapeLike = ...) -> ndarray[Any, dtype[float64]]: ...
 | 
						|
    @overload
 | 
						|
    def tomaxint(self, size: None = ...) -> int: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def tomaxint(self, size: _ShapeLike = ...) -> ndarray[Any, dtype[int_]]: ...
 | 
						|
    @overload
 | 
						|
    def randint(  # type: ignore[misc]
 | 
						|
        self,
 | 
						|
        low: int,
 | 
						|
        high: None | int = ...,
 | 
						|
    ) -> int: ...
 | 
						|
    @overload
 | 
						|
    def randint(  # type: ignore[misc]
 | 
						|
        self,
 | 
						|
        low: int,
 | 
						|
        high: None | int = ...,
 | 
						|
        size: None = ...,
 | 
						|
        dtype: _DTypeLikeBool = ...,
 | 
						|
    ) -> bool: ...
 | 
						|
    @overload
 | 
						|
    def randint(  # type: ignore[misc]
 | 
						|
        self,
 | 
						|
        low: int,
 | 
						|
        high: None | int = ...,
 | 
						|
        size: None = ...,
 | 
						|
        dtype: _DTypeLikeInt | _DTypeLikeUInt = ...,
 | 
						|
    ) -> int: ...
 | 
						|
    @overload
 | 
						|
    def randint(  # type: ignore[misc]
 | 
						|
        self,
 | 
						|
        low: _ArrayLikeInt_co,
 | 
						|
        high: None | _ArrayLikeInt_co = ...,
 | 
						|
        size: None | _ShapeLike = ...,
 | 
						|
    ) -> ndarray[Any, dtype[int_]]: ...
 | 
						|
    @overload
 | 
						|
    def randint(  # type: ignore[misc]
 | 
						|
        self,
 | 
						|
        low: _ArrayLikeInt_co,
 | 
						|
        high: None | _ArrayLikeInt_co = ...,
 | 
						|
        size: None | _ShapeLike = ...,
 | 
						|
        dtype: _DTypeLikeBool = ...,
 | 
						|
    ) -> ndarray[Any, dtype[bool_]]: ...
 | 
						|
    @overload
 | 
						|
    def randint(  # type: ignore[misc]
 | 
						|
        self,
 | 
						|
        low: _ArrayLikeInt_co,
 | 
						|
        high: None | _ArrayLikeInt_co = ...,
 | 
						|
        size: None | _ShapeLike = ...,
 | 
						|
        dtype: dtype[int8] | type[int8] | _Int8Codes | _SupportsDType[dtype[int8]] = ...,
 | 
						|
    ) -> ndarray[Any, dtype[int8]]: ...
 | 
						|
    @overload
 | 
						|
    def randint(  # type: ignore[misc]
 | 
						|
        self,
 | 
						|
        low: _ArrayLikeInt_co,
 | 
						|
        high: None | _ArrayLikeInt_co = ...,
 | 
						|
        size: None | _ShapeLike = ...,
 | 
						|
        dtype: dtype[int16] | type[int16] | _Int16Codes | _SupportsDType[dtype[int16]] = ...,
 | 
						|
    ) -> ndarray[Any, dtype[int16]]: ...
 | 
						|
    @overload
 | 
						|
    def randint(  # type: ignore[misc]
 | 
						|
        self,
 | 
						|
        low: _ArrayLikeInt_co,
 | 
						|
        high: None | _ArrayLikeInt_co = ...,
 | 
						|
        size: None | _ShapeLike = ...,
 | 
						|
        dtype: dtype[int32] | type[int32] | _Int32Codes | _SupportsDType[dtype[int32]] = ...,
 | 
						|
    ) -> ndarray[Any, dtype[int32]]: ...
 | 
						|
    @overload
 | 
						|
    def randint(  # type: ignore[misc]
 | 
						|
        self,
 | 
						|
        low: _ArrayLikeInt_co,
 | 
						|
        high: None | _ArrayLikeInt_co = ...,
 | 
						|
        size: None | _ShapeLike = ...,
 | 
						|
        dtype: None | dtype[int64] | type[int64] | _Int64Codes | _SupportsDType[dtype[int64]] = ...,
 | 
						|
    ) -> ndarray[Any, dtype[int64]]: ...
 | 
						|
    @overload
 | 
						|
    def randint(  # type: ignore[misc]
 | 
						|
        self,
 | 
						|
        low: _ArrayLikeInt_co,
 | 
						|
        high: None | _ArrayLikeInt_co = ...,
 | 
						|
        size: None | _ShapeLike = ...,
 | 
						|
        dtype: dtype[uint8] | type[uint8] | _UInt8Codes | _SupportsDType[dtype[uint8]] = ...,
 | 
						|
    ) -> ndarray[Any, dtype[uint8]]: ...
 | 
						|
    @overload
 | 
						|
    def randint(  # type: ignore[misc]
 | 
						|
        self,
 | 
						|
        low: _ArrayLikeInt_co,
 | 
						|
        high: None | _ArrayLikeInt_co = ...,
 | 
						|
        size: None | _ShapeLike = ...,
 | 
						|
        dtype: dtype[uint16] | type[uint16] | _UInt16Codes | _SupportsDType[dtype[uint16]] = ...,
 | 
						|
    ) -> ndarray[Any, dtype[uint16]]: ...
 | 
						|
    @overload
 | 
						|
    def randint(  # type: ignore[misc]
 | 
						|
        self,
 | 
						|
        low: _ArrayLikeInt_co,
 | 
						|
        high: None | _ArrayLikeInt_co = ...,
 | 
						|
        size: None | _ShapeLike = ...,
 | 
						|
        dtype: dtype[uint32] | type[uint32] | _UInt32Codes | _SupportsDType[dtype[uint32]] = ...,
 | 
						|
    ) -> ndarray[Any, dtype[uint32]]: ...
 | 
						|
    @overload
 | 
						|
    def randint(  # type: ignore[misc]
 | 
						|
        self,
 | 
						|
        low: _ArrayLikeInt_co,
 | 
						|
        high: None | _ArrayLikeInt_co = ...,
 | 
						|
        size: None | _ShapeLike = ...,
 | 
						|
        dtype: dtype[uint64] | type[uint64] | _UInt64Codes | _SupportsDType[dtype[uint64]] = ...,
 | 
						|
    ) -> ndarray[Any, dtype[uint64]]: ...
 | 
						|
    @overload
 | 
						|
    def randint(  # type: ignore[misc]
 | 
						|
        self,
 | 
						|
        low: _ArrayLikeInt_co,
 | 
						|
        high: None | _ArrayLikeInt_co = ...,
 | 
						|
        size: None | _ShapeLike = ...,
 | 
						|
        dtype: dtype[int_] | type[int] | type[int_] | _IntCodes | _SupportsDType[dtype[int_]] = ...,
 | 
						|
    ) -> ndarray[Any, dtype[int_]]: ...
 | 
						|
    @overload
 | 
						|
    def randint(  # type: ignore[misc]
 | 
						|
        self,
 | 
						|
        low: _ArrayLikeInt_co,
 | 
						|
        high: None | _ArrayLikeInt_co = ...,
 | 
						|
        size: None | _ShapeLike = ...,
 | 
						|
        dtype: dtype[uint] | type[uint] | _UIntCodes | _SupportsDType[dtype[uint]] = ...,
 | 
						|
    ) -> ndarray[Any, dtype[uint]]: ...
 | 
						|
    def bytes(self, length: int) -> bytes: ...
 | 
						|
    @overload
 | 
						|
    def choice(
 | 
						|
        self,
 | 
						|
        a: int,
 | 
						|
        size: None = ...,
 | 
						|
        replace: bool = ...,
 | 
						|
        p: None | _ArrayLikeFloat_co = ...,
 | 
						|
    ) -> int: ...
 | 
						|
    @overload
 | 
						|
    def choice(
 | 
						|
        self,
 | 
						|
        a: int,
 | 
						|
        size: _ShapeLike = ...,
 | 
						|
        replace: bool = ...,
 | 
						|
        p: None | _ArrayLikeFloat_co = ...,
 | 
						|
    ) -> ndarray[Any, dtype[int_]]: ...
 | 
						|
    @overload
 | 
						|
    def choice(
 | 
						|
        self,
 | 
						|
        a: ArrayLike,
 | 
						|
        size: None = ...,
 | 
						|
        replace: bool = ...,
 | 
						|
        p: None | _ArrayLikeFloat_co = ...,
 | 
						|
    ) -> Any: ...
 | 
						|
    @overload
 | 
						|
    def choice(
 | 
						|
        self,
 | 
						|
        a: ArrayLike,
 | 
						|
        size: _ShapeLike = ...,
 | 
						|
        replace: bool = ...,
 | 
						|
        p: None | _ArrayLikeFloat_co = ...,
 | 
						|
    ) -> ndarray[Any, Any]: ...
 | 
						|
    @overload
 | 
						|
    def uniform(self, low: float = ..., high: float = ..., size: None = ...) -> float: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def uniform(
 | 
						|
        self,
 | 
						|
        low: _ArrayLikeFloat_co = ...,
 | 
						|
        high: _ArrayLikeFloat_co = ...,
 | 
						|
        size: None | _ShapeLike = ...,
 | 
						|
    ) -> ndarray[Any, dtype[float64]]: ...
 | 
						|
    @overload
 | 
						|
    def rand(self) -> float: ...
 | 
						|
    @overload
 | 
						|
    def rand(self, *args: int) -> ndarray[Any, dtype[float64]]: ...
 | 
						|
    @overload
 | 
						|
    def randn(self) -> float: ...
 | 
						|
    @overload
 | 
						|
    def randn(self, *args: int) -> ndarray[Any, dtype[float64]]: ...
 | 
						|
    @overload
 | 
						|
    def random_integers(self, low: int, high: None | int = ..., size: None = ...) -> int: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def random_integers(
 | 
						|
        self,
 | 
						|
        low: _ArrayLikeInt_co,
 | 
						|
        high: None | _ArrayLikeInt_co = ...,
 | 
						|
        size: None | _ShapeLike = ...,
 | 
						|
    ) -> ndarray[Any, dtype[int_]]: ...
 | 
						|
    @overload
 | 
						|
    def standard_normal(self, size: None = ...) -> float: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def standard_normal(  # type: ignore[misc]
 | 
						|
        self, size: _ShapeLike = ...
 | 
						|
    ) -> ndarray[Any, dtype[float64]]: ...
 | 
						|
    @overload
 | 
						|
    def normal(self, loc: float = ..., scale: float = ..., size: None = ...) -> float: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def normal(
 | 
						|
        self,
 | 
						|
        loc: _ArrayLikeFloat_co = ...,
 | 
						|
        scale: _ArrayLikeFloat_co = ...,
 | 
						|
        size: None | _ShapeLike = ...,
 | 
						|
    ) -> ndarray[Any, dtype[float64]]: ...
 | 
						|
    @overload
 | 
						|
    def standard_gamma(  # type: ignore[misc]
 | 
						|
        self,
 | 
						|
        shape: float,
 | 
						|
        size: None = ...,
 | 
						|
    ) -> float: ...
 | 
						|
    @overload
 | 
						|
    def standard_gamma(
 | 
						|
        self,
 | 
						|
        shape: _ArrayLikeFloat_co,
 | 
						|
        size: None | _ShapeLike = ...,
 | 
						|
    ) -> ndarray[Any, dtype[float64]]: ...
 | 
						|
    @overload
 | 
						|
    def gamma(self, shape: float, scale: float = ..., size: None = ...) -> float: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def gamma(
 | 
						|
        self,
 | 
						|
        shape: _ArrayLikeFloat_co,
 | 
						|
        scale: _ArrayLikeFloat_co = ...,
 | 
						|
        size: None | _ShapeLike = ...,
 | 
						|
    ) -> ndarray[Any, dtype[float64]]: ...
 | 
						|
    @overload
 | 
						|
    def f(self, dfnum: float, dfden: float, size: None = ...) -> float: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def f(
 | 
						|
        self, dfnum: _ArrayLikeFloat_co, dfden: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
 | 
						|
    ) -> ndarray[Any, dtype[float64]]: ...
 | 
						|
    @overload
 | 
						|
    def noncentral_f(self, dfnum: float, dfden: float, nonc: float, size: None = ...) -> float: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def noncentral_f(
 | 
						|
        self,
 | 
						|
        dfnum: _ArrayLikeFloat_co,
 | 
						|
        dfden: _ArrayLikeFloat_co,
 | 
						|
        nonc: _ArrayLikeFloat_co,
 | 
						|
        size: None | _ShapeLike = ...,
 | 
						|
    ) -> ndarray[Any, dtype[float64]]: ...
 | 
						|
    @overload
 | 
						|
    def chisquare(self, df: float, size: None = ...) -> float: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def chisquare(
 | 
						|
        self, df: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
 | 
						|
    ) -> ndarray[Any, dtype[float64]]: ...
 | 
						|
    @overload
 | 
						|
    def noncentral_chisquare(self, df: float, nonc: float, size: None = ...) -> float: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def noncentral_chisquare(
 | 
						|
        self, df: _ArrayLikeFloat_co, nonc: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
 | 
						|
    ) -> ndarray[Any, dtype[float64]]: ...
 | 
						|
    @overload
 | 
						|
    def standard_t(self, df: float, size: None = ...) -> float: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def standard_t(
 | 
						|
        self, df: _ArrayLikeFloat_co, size: None = ...
 | 
						|
    ) -> ndarray[Any, dtype[float64]]: ...
 | 
						|
    @overload
 | 
						|
    def standard_t(
 | 
						|
        self, df: _ArrayLikeFloat_co, size: _ShapeLike = ...
 | 
						|
    ) -> ndarray[Any, dtype[float64]]: ...
 | 
						|
    @overload
 | 
						|
    def vonmises(self, mu: float, kappa: float, size: None = ...) -> float: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def vonmises(
 | 
						|
        self, mu: _ArrayLikeFloat_co, kappa: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
 | 
						|
    ) -> ndarray[Any, dtype[float64]]: ...
 | 
						|
    @overload
 | 
						|
    def pareto(self, a: float, size: None = ...) -> float: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def pareto(
 | 
						|
        self, a: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
 | 
						|
    ) -> ndarray[Any, dtype[float64]]: ...
 | 
						|
    @overload
 | 
						|
    def weibull(self, a: float, size: None = ...) -> float: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def weibull(
 | 
						|
        self, a: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
 | 
						|
    ) -> ndarray[Any, dtype[float64]]: ...
 | 
						|
    @overload
 | 
						|
    def power(self, a: float, size: None = ...) -> float: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def power(
 | 
						|
        self, a: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
 | 
						|
    ) -> ndarray[Any, dtype[float64]]: ...
 | 
						|
    @overload
 | 
						|
    def standard_cauchy(self, size: None = ...) -> float: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def standard_cauchy(self, size: _ShapeLike = ...) -> ndarray[Any, dtype[float64]]: ...
 | 
						|
    @overload
 | 
						|
    def laplace(self, loc: float = ..., scale: float = ..., size: None = ...) -> float: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def laplace(
 | 
						|
        self,
 | 
						|
        loc: _ArrayLikeFloat_co = ...,
 | 
						|
        scale: _ArrayLikeFloat_co = ...,
 | 
						|
        size: None | _ShapeLike = ...,
 | 
						|
    ) -> ndarray[Any, dtype[float64]]: ...
 | 
						|
    @overload
 | 
						|
    def gumbel(self, loc: float = ..., scale: float = ..., size: None = ...) -> float: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def gumbel(
 | 
						|
        self,
 | 
						|
        loc: _ArrayLikeFloat_co = ...,
 | 
						|
        scale: _ArrayLikeFloat_co = ...,
 | 
						|
        size: None | _ShapeLike = ...,
 | 
						|
    ) -> ndarray[Any, dtype[float64]]: ...
 | 
						|
    @overload
 | 
						|
    def logistic(self, loc: float = ..., scale: float = ..., size: None = ...) -> float: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def logistic(
 | 
						|
        self,
 | 
						|
        loc: _ArrayLikeFloat_co = ...,
 | 
						|
        scale: _ArrayLikeFloat_co = ...,
 | 
						|
        size: None | _ShapeLike = ...,
 | 
						|
    ) -> ndarray[Any, dtype[float64]]: ...
 | 
						|
    @overload
 | 
						|
    def lognormal(self, mean: float = ..., sigma: float = ..., size: None = ...) -> float: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def lognormal(
 | 
						|
        self,
 | 
						|
        mean: _ArrayLikeFloat_co = ...,
 | 
						|
        sigma: _ArrayLikeFloat_co = ...,
 | 
						|
        size: None | _ShapeLike = ...,
 | 
						|
    ) -> ndarray[Any, dtype[float64]]: ...
 | 
						|
    @overload
 | 
						|
    def rayleigh(self, scale: float = ..., size: None = ...) -> float: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def rayleigh(
 | 
						|
        self, scale: _ArrayLikeFloat_co = ..., size: None | _ShapeLike = ...
 | 
						|
    ) -> ndarray[Any, dtype[float64]]: ...
 | 
						|
    @overload
 | 
						|
    def wald(self, mean: float, scale: float, size: None = ...) -> float: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def wald(
 | 
						|
        self, mean: _ArrayLikeFloat_co, scale: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
 | 
						|
    ) -> ndarray[Any, dtype[float64]]: ...
 | 
						|
    @overload
 | 
						|
    def triangular(self, left: float, mode: float, right: float, size: None = ...) -> float: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def triangular(
 | 
						|
        self,
 | 
						|
        left: _ArrayLikeFloat_co,
 | 
						|
        mode: _ArrayLikeFloat_co,
 | 
						|
        right: _ArrayLikeFloat_co,
 | 
						|
        size: None | _ShapeLike = ...,
 | 
						|
    ) -> ndarray[Any, dtype[float64]]: ...
 | 
						|
    @overload
 | 
						|
    def binomial(self, n: int, p: float, size: None = ...) -> int: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def binomial(
 | 
						|
        self, n: _ArrayLikeInt_co, p: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
 | 
						|
    ) -> ndarray[Any, dtype[int_]]: ...
 | 
						|
    @overload
 | 
						|
    def negative_binomial(self, n: float, p: float, size: None = ...) -> int: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def negative_binomial(
 | 
						|
        self, n: _ArrayLikeFloat_co, p: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
 | 
						|
    ) -> ndarray[Any, dtype[int_]]: ...
 | 
						|
    @overload
 | 
						|
    def poisson(self, lam: float = ..., size: None = ...) -> int: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def poisson(
 | 
						|
        self, lam: _ArrayLikeFloat_co = ..., size: None | _ShapeLike = ...
 | 
						|
    ) -> ndarray[Any, dtype[int_]]: ...
 | 
						|
    @overload
 | 
						|
    def zipf(self, a: float, size: None = ...) -> int: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def zipf(
 | 
						|
        self, a: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
 | 
						|
    ) -> ndarray[Any, dtype[int_]]: ...
 | 
						|
    @overload
 | 
						|
    def geometric(self, p: float, size: None = ...) -> int: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def geometric(
 | 
						|
        self, p: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
 | 
						|
    ) -> ndarray[Any, dtype[int_]]: ...
 | 
						|
    @overload
 | 
						|
    def hypergeometric(self, ngood: int, nbad: int, nsample: int, size: None = ...) -> int: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def hypergeometric(
 | 
						|
        self,
 | 
						|
        ngood: _ArrayLikeInt_co,
 | 
						|
        nbad: _ArrayLikeInt_co,
 | 
						|
        nsample: _ArrayLikeInt_co,
 | 
						|
        size: None | _ShapeLike = ...,
 | 
						|
    ) -> ndarray[Any, dtype[int_]]: ...
 | 
						|
    @overload
 | 
						|
    def logseries(self, p: float, size: None = ...) -> int: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def logseries(
 | 
						|
        self, p: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
 | 
						|
    ) -> ndarray[Any, dtype[int_]]: ...
 | 
						|
    def multivariate_normal(
 | 
						|
        self,
 | 
						|
        mean: _ArrayLikeFloat_co,
 | 
						|
        cov: _ArrayLikeFloat_co,
 | 
						|
        size: None | _ShapeLike = ...,
 | 
						|
        check_valid: Literal["warn", "raise", "ignore"] = ...,
 | 
						|
        tol: float = ...,
 | 
						|
    ) -> ndarray[Any, dtype[float64]]: ...
 | 
						|
    def multinomial(
 | 
						|
        self, n: _ArrayLikeInt_co, pvals: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
 | 
						|
    ) -> ndarray[Any, dtype[int_]]: ...
 | 
						|
    def dirichlet(
 | 
						|
        self, alpha: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
 | 
						|
    ) -> ndarray[Any, dtype[float64]]: ...
 | 
						|
    def shuffle(self, x: ArrayLike) -> None: ...
 | 
						|
    @overload
 | 
						|
    def permutation(self, x: int) -> ndarray[Any, dtype[int_]]: ...
 | 
						|
    @overload
 | 
						|
    def permutation(self, x: ArrayLike) -> ndarray[Any, Any]: ...
 | 
						|
 | 
						|
_rand: RandomState
 | 
						|
 | 
						|
beta = _rand.beta
 | 
						|
binomial = _rand.binomial
 | 
						|
bytes = _rand.bytes
 | 
						|
chisquare = _rand.chisquare
 | 
						|
choice = _rand.choice
 | 
						|
dirichlet = _rand.dirichlet
 | 
						|
exponential = _rand.exponential
 | 
						|
f = _rand.f
 | 
						|
gamma = _rand.gamma
 | 
						|
get_state = _rand.get_state
 | 
						|
geometric = _rand.geometric
 | 
						|
gumbel = _rand.gumbel
 | 
						|
hypergeometric = _rand.hypergeometric
 | 
						|
laplace = _rand.laplace
 | 
						|
logistic = _rand.logistic
 | 
						|
lognormal = _rand.lognormal
 | 
						|
logseries = _rand.logseries
 | 
						|
multinomial = _rand.multinomial
 | 
						|
multivariate_normal = _rand.multivariate_normal
 | 
						|
negative_binomial = _rand.negative_binomial
 | 
						|
noncentral_chisquare = _rand.noncentral_chisquare
 | 
						|
noncentral_f = _rand.noncentral_f
 | 
						|
normal = _rand.normal
 | 
						|
pareto = _rand.pareto
 | 
						|
permutation = _rand.permutation
 | 
						|
poisson = _rand.poisson
 | 
						|
power = _rand.power
 | 
						|
rand = _rand.rand
 | 
						|
randint = _rand.randint
 | 
						|
randn = _rand.randn
 | 
						|
random = _rand.random
 | 
						|
random_integers = _rand.random_integers
 | 
						|
random_sample = _rand.random_sample
 | 
						|
rayleigh = _rand.rayleigh
 | 
						|
seed = _rand.seed
 | 
						|
set_state = _rand.set_state
 | 
						|
shuffle = _rand.shuffle
 | 
						|
standard_cauchy = _rand.standard_cauchy
 | 
						|
standard_exponential = _rand.standard_exponential
 | 
						|
standard_gamma = _rand.standard_gamma
 | 
						|
standard_normal = _rand.standard_normal
 | 
						|
standard_t = _rand.standard_t
 | 
						|
triangular = _rand.triangular
 | 
						|
uniform = _rand.uniform
 | 
						|
vonmises = _rand.vonmises
 | 
						|
wald = _rand.wald
 | 
						|
weibull = _rand.weibull
 | 
						|
zipf = _rand.zipf
 | 
						|
# Two legacy that are trivial wrappers around random_sample
 | 
						|
sample = _rand.random_sample
 | 
						|
ranf = _rand.random_sample
 | 
						|
 | 
						|
def set_bit_generator(bitgen: BitGenerator) -> None:
 | 
						|
    ...
 | 
						|
 | 
						|
def get_bit_generator() -> BitGenerator:
 | 
						|
    ...
 |